Correlation between Progress in Box Trainers and Application in Animal Models for Laparoscopic Suturing

Thesis
Submitted for Partial Fulfillment of MD degree
In Urology

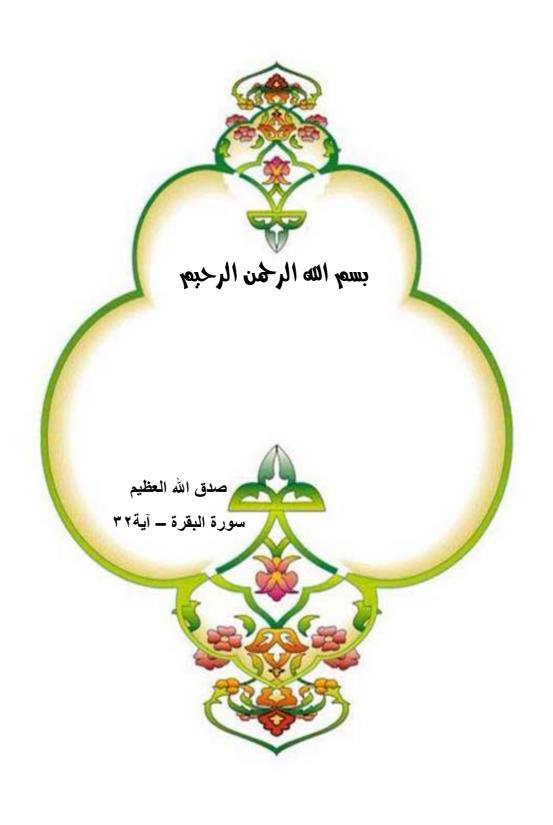
*By*Waleed ELsayed Mohamed Mousa

M.B.B.Ch., M.Sc urology, Faculty of Medicine, Ain Shams University

Under Supervision Of

Prof. Dr./ KHALED ABDELFATTAH TEAMA

Professor of Urology Faculty of Medicine, Ain Shams University


Prof. Dr. HASSAN SAYED SHAKER

Professor of Urology Faculty of Medicine, Ain Shams University

Dr. KARIM OMAR ELSAEED

Lecturer of Urology
Faculty of medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2014

First and foremost I thank "ALLAH" to whom I relate any success in achieving any work in my life.

I would like to express my deep appreciation to **Prof. Dr./ KHALED ABDELFATTAH TEAMA,** Professor of Urology, Faculty of Medicine, Ain Shams University, for his precious help, moral support, fruitful advice and kind attitude. I really have the honor to complete this work under his supervision.

I'm immensely indebted and deeply grateful to **Prof. Dr./ HASSAN SAYED SHAKER,** Professor of Urology,
Faculty of Medicine, Ain Shams University, for his great
encouragement, excellent guidance, powerful support,
valuable constructer advices and generous help throughout
this work.

I would like to express my great and deep appreciation to **Dr./KARIM OMAR ELSAFED**, Lecturer of Urology, Faculty of medicine, Ain Shams University, who gave me the honor of working under his supervision. He was kind to offer me much of his valuable time and advice.

List of Abbreviations

2 D	: 2 dimension
3 D	: 3 dimension
AUA	: American Urological Association
BLUS	: Basic Laparoscopic Urologic Surgery
FLS	: Fundamental laparoscopic skills
fr	: French
LRNST	: Laparoscopic, Robotic, and new
	Surgical Technology
Mb	: Mega byte
MHz	: Megahertz
MIST-VR	: Minimally invasive surgical trainer-
	Virtual reality
NASA	: National Aeronautics and Space
	Administration
OR	: Operative room
PC	: Personal computer
PERC	: Perutaneous
RAM	: Random-access memory
SAGES	: Society of American and Endoscopic
	Surgeons
Sec.	: Second
UCI	: University of California, Irvine
US	: united States
USA	: United States of America
VR	: Virtual reality

List of Tables

	Page
Table 1: Comparison between physicians' scores of holding the needle by the needle holder dividing the needle in the ratio 2:1 in box trainer trials and animal model trials	72
Table 2: Comparison between physicians' scores of holding the needle perpendicular to the needle holder in box trainer trials and animal model trials	73
Table 3: Comparison between physicians' scores of holding the needle at the tip of the needle holder in box trainer trials and animal model trials	74
Table 4: Comparison between physicians' scores of number of trials of needle handling in box trainer trials and animal model trials	75
Table 5: Comparison between physicians' scores of the distance of entry from the marked points in box trainer trials and animal model trials	76
Table 6: Comparison between physicians' scores of number of trials of suturing in box trainer trials and animal model trials	77
Table 7: Comparison between physicians' scores of the distance of entry between sutures edges in box trainer trials and animal model trials	78
Table 8: Comparison between physicians' scores of the Time spent for proper needle handling in box trainer trials and animal model trials	79
Table 9: Comparison between physicians' scores of the Time taken to complete suturing in box trainer trials and animal model trials	80
Table 10: Comparison between physicians' scores of the Time taken to complete the knot in box trainer trials and animal model trials	81

List of Tables (Cont.)

	Page
Table 11: Comparison of the average time taken by the trainees during needle handling ,suturing and knotting in the box trainer and animal model	83
Table 12: Comparison between physicians' average overall score in box trainer at first, second and third trial	84
Table 13: Comparison between trainees' average time taken for the whole suture in box trainer at first, second and third trial	85
Table 14: Comparison between physicians' average score in animal model at first, second and third trial	86
Table 15: Comparison between physicians' average time in animal model at first, second and third trial	87
Table 16: Comparison between the average score of the performance of the trainees in the 10 parameters of the evaluation form of laparoscopic suturing and average score of the overall score in the box trainer trials and animal model trials	89

List of Figures

Page	9
Figure 1: Model of crop and esophagus of chicken for learning of the laparoscopic pyeloplasty	
Figure 2: MIST-VR simulator (Mentice AB, Göteborg, Sweden)30	
Figure 3: Screenshot of LapSim Laparoscopic Cholecystectomy35	
Figure 4: LapVR	
Figure 5: Screenshot of Lap VR laparoscopic cholecystectomy37	
Figure 6: ProMIS simulator (Haptica Ltd., Dublin, Ireland	
Figure 7: Screen shot of ProMIS with VR Bowel on an Appendix Model	
Figure 8: Laparoscopic pyeloplasty48	
Figure 9: Handle configurations for needle drivers studied 51	
Figure 10: Triangulation of instruments and the camera trocar53	
Figure 11: Illustration of intracorporeal laparoscopic suturing and Knot tying54	
Figure 12: Illustration of extracorporeal laparoscopic suturing57	
Figure 13: Box trainer60	
Figure 14: Instruments used in laparoscopic training and assessment	
Figure 15: Suturing model fixed inside the box trainer61	
Figure 16: Animal model and laparoscopic station in the Learning Resource center	
Figure 17: Different steps of laparoscopic suturing (needle handling, suturing, and knotting)	
Figure 18: Placement of Veress needle during placement of the trocars	

List of Figures (Cont.)

	Page
Figure 19: A) Incision of the posterior peritoneum. B) Measuring the distance using marked piece of Ureteric catheter.	Ü
C) Marking points for laparoscopic suturing Using	
electrocautary	66
Figure 20: Laparoscopic needle handling , suturing , knotting in animal model	67
Figure 21: Strip of the muscle extracted from the animal model	07
to assess the sutures	68
Figure 22: Comparison between Trainees' average overall score	
in box trainer at first, second and third trial	84
Figure 23: Comparison between trainees' average time taken for	
the whole suture in box trainer at first, second and	
third trial	85
Figure 24: Comparison between Trainees' average score in	
animal model at first, second and third trial	86
Figure 25: Comparison between trainees' average time in animal	
model at first, second and third trial	87
Figure 26: Comparison between the score of the trainees as	
regard holding the needle holder in ratio 2:1, holding	
the needle perpendicular to the needle holder, the	
needle is held at the tip of needle holder in the box	
trainer and animal model	90
Figure 27: Comparison of the trainees' score in box trainer and	, 0
animal model as regard: number of trials of needle	
handling, the distance from marked points, number of	
trials of suturing and the distance between sutured	
edges	90
Figure 28: Comparison between the score of trainees in the box	70
trainer and animal model as regard: time spent for	
proper needle handling, time taken to complete	
suturing and time taken to complete the knot	Q 1
Figure 29: Comparison between the overall score of the trainees	/ 1
in hox trainer and animal model	92

Contents

Pag	ge
AcknowledgementI	
List of abbreviationsII	
Lits of tablesIII	
List of figuresV	
Introduction1	
Aim of the Work	
Review of literature	
i - Laparoscopic Training6	
II- Laparoscopic suturing44	
Methods	
Results70	
Discussion93	
Summary	
Conclusion	
References	
Appendix(1)	
Arabic Summary	

INTRODUCTION

At the time of this writing, interest in laparoscopic urology continues to rise at an unprecedented rate. This interest is currently evident in both urologic practice and training (*Gill*, 2006)

Laparoscopic surgery owes much of its history to the development of endoscopic techniques in the beginning of the 19th century. Initial methods to examine body orifices were developed in 1805 by the German physician Phillip Bozzini who developed an awkward system of candles and mirrors to examine canine bladders (*Kelley*, 2008)

Laparoscope had its modest beginning in 1901 when Kellings used Nitze cystoscope for the inspection of abdominal cavity of a dog and he called it coelioscopy. (*Palanivelu*, 2002)

The adaptation of laparoscopy into the urologic armamentarium has been a slower process, the laparoscope was initially used to locate cryptorchid testicles and to plan a subsequent open procedure, Schuessler was the first to present laparoscopic approach to common urologic procedure, the pelvic lymphadenectomy (*Nakada et al.*, 2010)

But Urologic laparoscopy has dramatically progressed over the past 10 years. To date, however, the large experiences exist mainly at academic centers (*Gill*, 2006)

This due to the wide range and availability of information, has led the patient population to demand laparoscopic knowledge and skills from the urologic community. Thus, residency programs are increasingly emphasizing laparoscopic training, and graduates should have enhanced familiarity with laparoscopic technique once delegated to specialty training (*Gill*, 2006)

Laparoscopy challenges surgeons' skills on multiple grounds including: an inability to touch tissue, a lack of a 3-dimensional view, counterintuitive fulcrum lead, and the loss of finger dexterity (*Gjertson et al.*, 2008)

The laparoscopic approach also requires a longer operative time and creates greater stress and fatigue in surgeons. So, Laparoscopic surgery requires additional training compared with open surgery (*Gallagher et al.*, 2002).

Also Laparoscopic surgery requires skills that are different from those required for open surgery. Simulators were developed to train these skills in a pressure-free environment with or without supervision. Simulators can roughly be divided into box trainers (also video trainers) and virtual reality trainers (*Mohammadi et al.*, 2010).

The interest in training facilities outside the operating room (OR) was further enhanced by issues like quality control, patient safety, and cost-effectiveness. Simulator training is shown to be effective in providing skills that are transferable to the OR and to decrease procedural complications. (*Gjertson et al.*, 2008)

Besides, the use of simulation in surgical training curricula is becoming more widely accepted as simulators are able to provide objective assessment and feedback. Objective assessment of performance is fundamental to provide formative feedback during training, allowing for continuous skill refinement (*Aggarwal et al.*, 2004)

Especially for laparoscopic suturing skills, it is important that the participants have tactile feeling of what they are doing during the procedure (*Strom et al.*, 2006)

This is because laparoscopic suturing has been considered as the "master technique" in endoscopic surgery. Suturing and knot tying in the closed confines of the peritoneum or retroperitoneum take mastery of laparoscopic dexterity to its maximum extent and clearly separates those with experience from the novice (*Gill*, 2006)

Recently, Professional organizations have recognized the need to assess surgical performance objectively in order to standardize training programs, so the simulator has to provide metrics that are meaningful and informative to the trainee in order to be an effective training tool (*Botden et al.*, 2009)

.

AIM OF THE WORK

To correlate the effect of receiving standardized training for laparoscopic suturing using box trainer with the progress in laparoscopic suturing in animal models.

REVIEW OF LITERATURE I - LAPAROSCOPIC TRAINING

 Importance and Advantages of Laparoscopic Training:

With advances in technology, laparoscopic surgery has replaced open surgery in many surgical operations. Advanced surgical operations are now being done laparoscopically, and more reconstructive procedures are being performed. The skill of laparoscopic suturing is very important for performance of these advanced laparoscopic procedures (*Bansal et al.*, 2012)

The main goal of training is to produce a surgeon who is highly competent and confident in performing laparoscopic procedures; and thereby mitigate the risks of complications. Because of the specific risks training via the apprenticementor teaching method may be suboptimal for teaching laparoscopic surgery (*Stovall et al.*, 2006).

Over the last 3 decades, many training devices have been developed in an attempt to remove the bulk of the training burden from the operating room. All of these platforms hope to minimize the morbidity and mortality associated with the learning curve of laparoscopic techniques