

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics and Communication Engineering Department

Performance Analysis of OFDM Techniques used in Fourth Generation Mobile Communication Systems

A Thesis

Submitted in Partial Fulfillment of the Requirements

For the Degree of Doctor of Philosophy in Electrical Engineering

(Electronics and Communication Engineering)

Submitted By

Eng:Reem Hamed Abd El-Maqsoud Abd El-Hadi

Supervised By

Prof. Dr. Salwa Hussein El-Ramly
Associate Prof. Dr. Hesham Mohammed El-Badawy

Cairo – Egypt October 2009

ACKNOWLEDGMENT

Hussein El-Ramly for her precious help, valuable guidance and continuous support. Professor Dr. Salwa inspired me a sense of enthusiasm, optimism and motivation and she provided me with a lot of her wide knowledge and experience. Professor Dr. Salwa gave me much of her valuable time whenever I asked and she kept encouraging me to work harder. I am very lucky to have Professor Dr. Salwa as my Ph.D. supervisor. No words can express my appreciation to her. I will always be very grateful to her for my whole life.

I would like to express my heartfelt thanks to Dr. Hesham Mohammed El-Badawy for his inspiration, valuable guidance and his great efforts in supervising my Ph.D. thesis. Throughout my research period, he provided me with lots of valuable ideas and many stimulating suggestions. I will always appreciate his encouragement and support in our discussions. Really, I would like to thank Dr. Hesham for his guidance and support for me in my Ph.D and also as supervisor in my work.

I would like to express my great thanks to the name of Professor Dr. **Bahnasy Mohamed Nossier,** my x-supervisor for his great effort in guiding me in my Ph.D and in my work. It is actually a great opportunity to learn from his wide experience.

Finally, let me thank my family especially my husband, who gave me help and support along the way. And also I would like to thank my friends and my colleagues in my work for their help.

Table of Contents

List	of figures	ix
List	of tables	XV
List	of abbreviations	XV
List	of symbols	XX
Cha	pter 1 : INTRODUCTION	1
1.1	Introduction	1
1.2	Thesis Contributions	3
1.3	Thesis Organization	4
1.4	Conclusion	4
Cha	pter 2 : WIRELESS CHANNELS	5
2.1	Introduction	5
2.2	Radio Communication Channels	6
	2.2.1. Free-space propagation model	6
	2.2.1.1 Reflection, Diffraction, and Scattering	7
	2.2.2. Fading Channel Models	9
	2.2.2.1 Rayleigh fading	12
	2.2.2.2 Rician fading	12
	2.2.2.3 Nakagami- <i>m</i> fading	13
	2.2.3 Flat fading	14
	2.2.4 Frequency-selective fading	15

2.3	Transmission Impairments	17
	2.3.1 Attenuation	18
	2.3.2 Delay Distortion	18
	2.3.3 Noise	18
	2.3.3.1 Thermal Noise	19
	2.3.3.2 Cross Talk	19
	2.3.3.3 Impulse Noise	19
	2.3.3 Intermodulation	19
	2.3.4 Inter Symbol Interference (ISI)	19
	2.3.5 Doppler Shift	20
2.4	Conclusion	20
Cha	pter 3 : OFDM IN WIMAX NETWORKS	21
3	.1. Introduction	21
3	.2. Principles of OFDM	22
	3.2.1. Signal characteristics	23
	3.2.2. OFDM with a cyclic prefix	26
	3.2.3. Channel noise and Doppler spread	28
3	.3. OFDM Advantages and Disadvantages	29
	3.3.1. OFDM Advantages	29
	3.3.2. OFDM Disadvantages	30
3	.4. OFDM Applications	30
3	.5. OFDMA Technologies	31
	3.5.1. Packet-switched air interface	32

3.5.2. OFDMA Physical layer advantages	32
3.5.3. MAC and link layer advantages	33
3.6. OFDM in 4G Mobile Communication (Mobile WiMAX)	34
3.6.1. IEEE 802.16	35
3.6.1.1. THE IEEE 802.16 ARCHITECTURE	35
3.6.1.2. IEEE 802.16 STANDARDS	35
3.6.2. Mobile WiMAX Networks	39
3.6.2.1. Salient Features of WiMAX	42
3.6.2.2. Medium Access Control (MAC)	45
3.6.2.2.1. The Service Specific Convergence Sublayer (SSCS)	47
3.6.2.2.2. MAC Common Part Sublayer MAC (CPS)	47
3.6.2.2.3. Privacy Sublayer	47
3.6.2.3. Physical layer	48
3.6.2.3.1. Channel Coding	50
3.6.2.3.2. Symbol mapping	54
3.7 Conclusion	54
Chapter 4: INTERCARRIER INTERFERENCE AND CHANNEL	
ESTIMATION IN OFDM	55
4.1 Introduction	55
4.2 OFDM Sensitivity	56
4.2.1 Frequency offset	56
4.2.2 Time-varying channel	60
4.2.3 Phase noise	61

4.2.4 Receiver ti	ming er	rors	61
4.2.5 Peak-to-ave	erage po	ower ratio	63
4.3 Synchronization and S	System A	Architecture	64
4.3.1 Timing and Frame Synchr	onizatio	n	65
4.4 Channel Estimation	in OFD	M	66
4.4.1 Block-T	Type Pilo	ot Channel Estimation	69
4.4.1	.1	LS Estimator	69
4.4.1	.2	LS Estimator	69
4.4.1	3	Modified MMSE Estimator	71
4.4.1	.4	Estimation with Decision Feedback	73
4.4.2 Comb-T	Γype Pil	ot Channel Estimation	74
4.4.2	.1	LS Estimator with 1D Interpolation	74
4.4	4.2.1.1	Linear Interpolation (LI)	75
4.4	4.2.1.2	Second-Order Interpolation (SOI)	75
4.4	4.2.1.3	Low-Pass Interpolation (LPI)	75
4.4	4.2.1.4	Spline Cubic Interpolation (SCI)	75
4.4	4.2.1.5	Time Domain Interpolation (TDI)	75
4.4.3 ML Esti	imator		76
4.4.4 Comput	tational	complexity	77
4.5 Inter Carrier Interfer	rence In	OFDM	78
4.5.1 ICI Rec	duction	methods	78
4.5.1.1 Free	quency-	domain equalization	78
4512O-T	an Eauc	alizer	80

	4.5.1.3 Time-domain windowing	81
	4.5.1.4 Partial transmits sequences & selected mapping	83
	4.5.1.4.1 Partial transmit sequences	83
	4.5.1.4.2 Selected mapping	83
	4.5.1.5 Self-cancellation scheme	84
	4.5.1.6 Maximum Likelihood Estimate (MLE) Scheme	85
	4.5.1.7 Extended Kalman Filtering EKF Scheme	86
	4.5.1.8 ICI cancellation using auto-regressive modelling	86
	4.5.1.9 Tone Reservation	87
4.6 C	onclusion	92
-	: PERFORMANCE ASSESSMENT FOR MOBILE WIMAX KS	93
5.1	Introduction	93
5.2	System Model	93
	5.2.1 The Transmitter	94
	5.2.2 Channel Model	95
	5.2.3 The Receiver	96
	5.2.4 Channel Estimation Criteria	98
5.3	Bit Error Rate for BPSK	101
5.4	Bit Error Rate for QPSK	105
5.5	Bit Error Rate for 16 QAM	108
5.6	Bit Error Rate for 64 QAM	113

5.7 Numerical Results	121
5.7.1 System Validation	121
5.7.2 BER Analytical Results	123
5.8 Conclusion	137
Chapter 6 : PERFORMANCE OF ADAPTIVE MODULATION IN MOBILE WIMAX NETWORKS	138
6.1 Introduction	138
6.2 Modulation Adaptation Enhancement	138
6.2.1 Mobile WiMAX for N=256	138
6.2.1.1 Uplink Physical Layer	139
6.2.1.2 Downlink Physical Layer	147
6.2.2Mobile WiMAX for N=1024	153
6.2.2.1 Uplink Physical Layer	153
6.2.2.2 Downlink Physical Layer	163
6.3 Conclusion	162
Chapter 7 : CONCLUSION AND FUTURE DIRECTIONS	163
7.1 Conclusion	163
7.2 Future Directions	165
Publications Extracted from the Thesis	170
References	171

viii

TABLE OF FIGURES

Figure 2.1	Major radio propagation mechanisms	9
Figure 2.2	Channel fading types	11
Figure 2.3	A generic two-path multipath channel model	17
Figure 3.1	The real parts of three of the basic functions	24
Figure 3.2	Frequency characteristics of an OFDM signal	25
Figure 3.3	The concept of a cyclic prefix	26
Figure 3.4	OFDM technologies Mapped to the OSI model	31
Figure 3.5	IEEE 802.16 reference model and protocol stack	46
Figure 3.6	Functional stages of WIMAX PHY Layer	50
Figure 3.7	Code block segmentation	51
Figure 3.8	QPSK,16 QAM, and 64 QAM modulation constellation	54
Figure 4.1	Moose's frequency offset estimation method	57
Figure 4.2	Constellation of received symbols when 5% normalized frequency offset is present	60
Figure 4.3	Synchronization sequence in OFDM	64
Figure 4.4	Frame synchronization	65
Figure 4.5	Timing offset estimate	66
Figure 4.6	Two Basic Types of Pilot Arrangement for OFDM Channel Estimations	68
Figure 4.7	Dispersed pattern of a pilot in an OFDM data symbol	79
Figure 4.8	Position of carriers in the DFT filter bank	82
Figure 5.1	OFDM System Model	94
Figure 5.2	The constellation diagram, decision boundaries, and bit mapping of RPSK	101

Figure 5.3	The constellation diagram, decision boundaries, and bit mapping of QPSK	106
Figure 5.4	QPSK bit demapping	106
Figure 5.5	The constellation diagram, decision boundaries, and bit mapping of 16 QAM	109
Figure 5.6	16 QAM bit by bit demapping	109
Figure 5.7	The modulation error in 16 QAM	110
Figure 5.8	The constellation diagram, decision boundaries, and bit mapping of 64 QAM	114
Figure 5.9	64 QAM bit by bit demapping	115
Figure 5.10	BER versus SNR for symbol duration= 11.2 μ sec and mobile speed 50km/hr for various values of channel estimation quality($^{\rho}$)	122
Figure5.11	ICI Power versus different speeds and different number of subcarrier	123
Figure5.12	BER versus SNR for BPSK for symbol duration= 102.86 µsec and mobile speed 3km/hr for various values of channel estimation quality ($^{\rho}$)	125
Figure5.13	BER versus SNR for QPSK for symbol duration= 102.86 µsec and mobile speed 3km/hr for various values of channel estimation quality ($^{\rho}$)	125
Figure5.14	BER versus SNR for 16QAM for symbol duration= 102.86 µsec and mobile speed 3km/hr for various values of channel estimation quality ($^{\rho}$)	126
Figure5.15	BER versus SNR for 64QAM for symbol duration= 102.86 μ sec and mobile speed 3km/hr for various values of channel estimation quality ($^{\rho}$)	
		126
Figure5.16	BER versus SNR for BPSK for symbol duration= 102.86 µsec and mobile speed 30km/hr for various values of channel estimation quality ($^{\rho}$)	127
Figure5.17	BER versus SNR for QPSK for symbol duration= 102.86 µsec and	127

	quality ($^{\rho}$)	
Figure5.18	BER versus SNR for 16QAM for symbol duration= 102.86 µsec and mobile speed 30km/hr for various values of channel estimation quality ($^{ ho}$)	128
Figure5.19	BER versus SNR for 64QAM for symbol duration= 102.86 µsec and mobile speed 30km/hr for various values of channel estimation quality ($^{ ho}$)	128
Figure5.20	BER versus SNR for BPSK for symbol duration= 102.86 µsec and mobile speed 60km/hr for various values of channel estimation quality ($^{ ho}$)	129
Figure5.21	BER versus SNR for QPSK for symbol duration= 102.86 µsec and mobile speed 60km/hr for various values of channel estimation quality($^{\rho}$)	129
Figure5.22	BER versus SNR for 16QAM for symbol duration= 102.86 µsec and mobile speed 60km/hr for various values of channel estimation quality ($^{ ho}$)	130
Figure5.23	BER versus SNR for 64QAM for symbol duration= 102.86 µsec and mobile speed 60km/hr for various values of channel estimation quality($^{ ho}$)	130
Figure5.24	BER versus SNR for BPSK for symbol duration= 102.86 µsec and mobile speed 90km/hr for various values of channel estimation quality ($^{\rho}$)	131
Figure5.25	BER versus SNR for QPSK for symbol duration= 102.86 µsec and mobile speed 90km/hr for various values of channel estimation quality($^{\rho}$)	131
Figure5.26	BER versus SNR for 16QAM for symbol duration= 102.86 µsec and mobile speed 90km/hr for various values of channel estimation quality ($^{\rho}$)	132
Figure5.27	BER versus SNR for 64QAM for symbol duration= 102.86 µsec and mobile speed 90km/hr for various values of channel estimation quality ($^{\rho}$)	132
Figure5.28	BER versus SNR for BPSK for symbol duration= $102.86~\mu sec$ and mobile speed $120km/hr$ for various values of channel estimation quality ($^{\rho}$)	133
Figure5.29	BER versus SNR for OPSK for symbol duration= 102.86 usec and	133

mobile speed 30km/hr for various values of channel estimation

Figure5.30	BER versus SNR for 16QAM for symbol duration= 102.86 µsec and mobile speed 120km/hr for various values of channel estimation quality ($^{ ho}$)	134
Figure5.31	BER versus SNR for 64QAM for symbol duration= 102.86 µsec and mobile speed 120km/hr for various values of channel estimation quality ($^{\rho}$)	134
Figure5.32	BER versus SNR BPSK, QPSK, 16QAM, and 64QAM for symbol duration= 102.86 µsec and mobile speed 60 km/hr for ρ = 1	136
Figure5.33	versus SNR for BPSK, QPSK, 16QAM, and 64QAM for symbol duration= 102.86 µsec and mobile speed 60km/hr for ρ =0.999	136
Figure5.34	BER versus SNR for BPSK for symbol duration= 102.86 μ sec and different mobile speeds for ρ =1	137
Figure 6.1	EBR_{UL_256} (Mbps) for AMC for different SNR (dB) in uplink direction for $N=256$	142
Figure 6.2	BER for AMC for different SNR (dB), for 60km/hr speed and ρ =1 for all symbol durations uplink direction	143
Figure 6.3	BER for different SNR (dB), N=256, ρ =1, 25 μ sec symbol duration and 60km/hr speed in uplink direction	144
Figure 6.4	BER for different SNR (dB), N=256, ρ =0.9999, 25 μ sec symbol duration and 60km/hr speed in uplink direction	144
Figure 6.5	BER for different SNR (dB), N=256, ρ =0.999, 25 μ sec symbol duration and 60km/hr speed in uplink direction	145
Figure 6.6	BER for different SNR (dB), N=256, ρ =0.99, 25 μ sec symbol duration and 60km/hr speed in uplink direction	145
Figure 6.7	BER for different SNR (dB), N=256, ρ =0.9999, 25 μ sec symbol duration and 120km/hr speed in uplink direction	146
Figure 6.8	EBR_{DL_256} (Mbps) for AMC for different SNR (dB) in downlink direction for N =256	149
Figure 6.9	BER for different SNR (dB), N=256, ρ =1, 25 μ sec symbol duration and 60km/hr speed in downlink direction	150
Figure6.10	BER for different SNR (dB), N=256, ρ =0.9999, 25 μ sec symbol	150

Figure6.11	BER for different SNR (dB), N=256, ρ =0.999, 25 μ sec symbol duration and 60km/hr speed in downlink direction	151
Figure6.12	BER for different SNR (dB), N=256, ρ =0.99, 25 μ sec symbol duration and 60km/hr speed in downlink direction	151
Figure6.13	BER for different SNR (dB), N=256, ρ =0.9999, 25 μ sec symbol duration and 120km/hr speed in downlink direction	152
Figure6.14	EBR_{UL_1024} (Mbps) for AMC for different SNR (dB) in uplink direction for N=1024and 102.68 μ sec symbol duration	154
Figure6.15	BER for different SNR (dB), N=1024, ρ =1, 102.68 μ sec symbol duration and 60km/hr speed in uplink direction	155
Figure6.16	BER for different SNR (dB), N=1024, ρ =0.9999, 102.68 μ sec symbol duration and 60 μ m/hr speed in uplink direction	155
Figure6.17	BER for different SNR (dB), N=1024, ρ =0.999, 102.68 μ sec symbol duration and 60km/hr speed in uplink direction	156
Figure6.18	BER for different SNR (dB), N=1024, ρ =0.99, 102.68 μ sec symbol duration and 60km/hr speed in uplink direction	156
Figure6.19	BER for different SNR (dB), N=1024, ρ =0.9999, 102.68 μ sec symbol duration and 120 μ m/hr speed in uplink direction	157
Figure6.20	$EBR_{DL_1024}(Mbps)$ for AMC for different SNR (dB) in downlink direction for N =1024	159
Figure6.21	BER for different SNR (dB), N=1024, ρ =1, 102.68 μ sec symbol duration and 60km/hr speed in downlink dir	159
Figure6.22	BER for different SNR (dB), N=1024, ρ =0.9999, 102.68 μ sec symbol duration and 60 μ m/hr speed in downlink direction	160
Figure6.23	BER for different SNR (dB), N=1024, ρ =0.999, 102.68 μ sec symbol duration and 60km/hr speed in downlink direction	160
Figure6.24	BER for different SNR (dB), N=1024, ρ =0.99, 102.68 μ sec symbol duration and 60km/hr speed in downlink direction	161
Figure6.25	BER for different SNR (dB), N=1024, ρ =0.9999, 102.68 μ sec symbol duration and 120km/hr speed in downlink direction	162

List of Tables

Table 3.1	Basic Data on IEEE 802.16 Standards	38,39
Table 3.2	Summaries the main differences between MBWA and fixed wireless	42
Table 4.1	Computational complexity of the channel estimation schemes	78
Table 4.2	ICI Reduction Methods comparison	89-92
Table 5.1	System Parameters of (57)	122
Table 5.2	Mobile WiMAX standard system parameters	124
Table 6.1	Probability of being in certain modulation scheme for uplink direction in	140
	N=256 and symbol duration 25 μsec	
Table 6.2	WiMAX standard system parameters	142
Table 6.3	Probability of being in certain modulation scheme for downlink direction	147
	in $N=256$ and symbol duration 25 μsec	
Table 6.4	Probability of being in certain modulation scheme for uplink direction in	153
	N=1024 and symbol duration 102.68 μsec	
Table 6.5	Probability of being in certain modulation scheme for Downlink direction	158
	in $N=1024$ and symbol duration $102.68 \mu sec$	

List of Abbreviations

AAS Advanced Antenna System

ACI Adjacent Channel Interference

ADSL Asynchronous Digital Subscriber Line

AES Advanced Encryption Standard

AF Amount of Fading

AFC Adaptive Frequency Correction

AMC Adaptive Modulation & Coding

ARQ Automatic Retransmission Request

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BLER Block Error Rate

BPSK Binary Phase Shift Keying

CC Convolution Coding

CCI Co-Channel Interference

CIR Carrier-to-Interference Ratio

CPS Common Part Sublayer

CQI Channel Quality Indicator

CS Convergence Sublayer

CSI Channel State Information

DAB Digital Audio Broadcast

DFT Discrete Fourier Transform