Effect of Autoclave Sterilization on The Cyclic Fatigue of Three Ni-Ti Rotary Instruments

Thesis

Submitted to the Faculty of Dentistry

Ain Shams University

For

Partial Fulfillment of the Requirements of the Master Degree in Endodontics.

Ву

Laila Mohammed Mukhtar Ahmed Elbatal

BDS-2001

University of Khartoum-Sudan

2015

Supervisors

Dr. Kariem Mostafa El Batouty

Associate Professor in Endodontics

Department of Endodontics,

Faculty of Dentistry, Ain Shams University

Dr. Maram Farouk Obeid

Lecturer in Endodontics

Department of Endodontics,

Faculty of Dentistry, Ain Shams University

Dedication

To my mother, the unique Sarrah,

To my father, the amazing Batal,

To my mother in-low, the lovely Asma

To my Abdelmageid, the love of my life,

To my blessed son, Mohammed,

To my lovely sisters, Fatima and Azza,

To my in-lows, the beautiful sisters & brother,

To my dear friend Wael El Shater.

Acknowledgement

I would like to express my deep gratitude to **Dr. Kariem Mostafa El Batouty**, Associate Professor, department of
Endodontics, Ain Shams University for his support,
kindness and supervision.

My sincere gratitude to **Dr. Maram Farouk Obeid** for her prompt support, cooperation, patience and guidance.

My deep gratitude to **Dr. Wael Elshater** for his continuous encouragement, assistance and shared knowledge throughout this work.

My thanks to **Eng. Sabri Elfangary** for the design and manufacture of the device and blocks.

My deep gratitude to **all staff members of endodontic department** of Ain Shams University for their support, guidance and shared knowledge throughout the years.

List of contents

List of figures		ii
List of tables		
Introduction		
Revie	w of literature	4
I.	Failure of Ni-Ti rotary instruments	5
1.	Cyclic fatigue of ProTaper	5
2.	Cyclic fatigue of Revo-S	18
3.	Cyclic fatigue of NRT	21
II.	Effect of sterilization on cyclic fatigue resistance of rotary	
	nickel titanium instruments	25
III.	Effect of sterilization on surface characteristics of rotary	
	nickel titanium instruments	32
Aim of the study		37
Mate	rials and methods	38
I.	Materials	38
II.	Methods	40
Resul	ts	61
I.	Statistical analysis of cyclic fatigue tests	61
II.	Scanning Electron Microscope analysis	67
Discussion		87
Summary and conclusion		109
References		113
Arabic summary		

List of figures

Figure 1: Rotary Ni-Ti files. (A) ProTaper Universal F3. (B) Revo-S AS30. (C) NRT#30/0.06	39
Figure 2: Hierarchy showing the classification of sample	41
Figure 3: Angle of curvature (α) and radius of curvature (r)	44
Figure 4: Software scheme showing the angle and radius of the canal curvature.	45
Figure 5: Software scheme showing the canal and curvature	45
Figure 6: showing the manufactured copper block with the canals replica.	49
Figure 7: Cyclic fatigue testing block. (A) Software diagram. (B) Manufactured stainless steel block with its acrylic cover	50
Figure 8: (A) Cyclic fatigue testing device diagram (side view), showing the vice (a) and the platform (b). (B)Manufactured cyclic fatigue device	52
Figure 9: Cyclic fatigue testing device (top view). (A) Diagram. (B) Manufactured device	53
Figure 10: cyclic fatigue testing with the handpiece fixed in place. (A): acrylic cover not fixed. (B): acrylic top cover fixed	56
Figure 11: rotary file inside the groove ready for testing	56
Figure 12: fractured file removed outside the groove by sliding the vice upward	57
Figure 13: Photographs showing Scanning Electron Microscope (A), files in the chamber (B), and files' vertical alignment on the platform for top view scanning (C)	60

Figure 14: Bar chart representing mean values for comparison between NCF of the three systems	64
Figure 15: Bar chart representing mean values for comparison between NCF without or with sterilization cycles for each system.	66
Figure 16: Longitudinal secondary electron SEM view of ProTaper Universal-F3 after 3 sterilization cycles and fatigue failure. (A) Low magnification 67x shows no signs of plastic deformation. (B) Higher magnification 120x showing machining grooves and disruption of cutting edges (black arrow is showing disruption of cutting edge).	69
Figure 17: Fractograph of PTU-F3 showing the occasional shear lip at the end of fracture surface (yellow arrow). Smooth area at the beginning of fracture surface (yellow *). The direction of crack propagation is obvious from the wavy beach marks of the slow propagating crack towards the rapid overload zone (blue interrupted arrow).	70
Figure 18: fractograph of PTU-F3 at high magnification 1200x showing the beach marks appearance of cyclic fatigue fracture, dimples and voids.	71
Figure 19: Fractograph of PTU-F3 at (A) High magnification 1500x, showing a smooth, narrow, brittle-like fracture zone at the periphery (yellow *) and a ductile pattern in the remaining surface. (B) Higher magnification 3500x for the yellow rectangle area in (A), showing the typical fatigue striations (blue arrows) representing the slow progression of crack.	72
Figure 20: PTU-F3 after 2 sterilization cycles and fatigue failure at low and high magnification showing two slow over load zones (defined by blue dotted scribble) indicating 2 different crack origins(A). Multiple levels of fracture surface (B)	73
Figure 21: Fractograph of PTU-F3 after 3 sterilization cycles at 150x (A) and 650x magnification(B), showing pronounced cracks (blue arrows) following manufacturing grooves.(B)	74

represents the yellow square in (A)	
Figure 22: Longitudinal secondary electron SEM view of Revo-S AS30 after 3 sterilization cycles and fatigue failure. (A) Low magnification 64x shows no signs of plastic deformation. (B) Higher magnification 120x showing machining grooves, disruption of cutting edge (striped arrow), corrosion of cutting edge (up arrow) and debris (black arrow).	76
Figure 23 : fractographs of Revo-S of control group at low and high magnification showing the rough surface with dimples and voids.	77
Figure 23: fractographs of Revo-S of control group at low and high magnification showing the rough surface with dimples and voids	78
Figure 25: Fractograph of Revo-S/AS30 at high and low magnification, showing: rough dimpled surface (A). Crack initiation following manufacturing groove (blue arrow) and rough surface (B).	79
Figure 26: Revo-S after 3 sterilization cycles at low (A) and high (B) magnification. Large dimples were noticed (blue arrows).	80
Figure 27: Longitudinal secondary electron SEM view of NRT#30/0.06 after 3 sterilization cycles and fatigue failure. (A) Low magnification 66x shows no signs of plastic deformation. (B) Higher magnification 120x showing machining grooves.	82
Figure 28: Fractograph of NRT#30/0.06 at high magnification 500x showing; slow overload zone (area above the scribbled line), rapid overload zone (area below the line), micro-cracks (black arrows). Notice the multiple levels of fracture surface	83
Figure 29: Fractograph of NRT#30/0.06 at low and high magnification showing multiple levels of fracture	84

Figure 30: Fractograph of NRT#30/0.06 at low (A) and high (B) magnification, showing the classical picture of fatigue failure: Crack origin following manufacturing grooves (*). Presence of relatively smooth dimpled area (1) mimicking the clam shell appearance, followed by rougher dimpling (2) showing the direction of crack progress.	85
Figure 31: Fractograph of NRT#30/0.06 at low (A) and high (B) magnification, showing the ductile fracture features with dimples (blue arrow) and voids (yellow arrow)	86

List of tables

Table 1: Dimensions of PTU-F3 file and the corresponding testing groove.	46
Table 2: Dimensions of Revo-S and its testing groove	47
Table 3: Dimensions of NRT and its testing groove	48
Table 4: Regression model results for the effect of different variables on mean NCF.	62
Table 5: Descriptive statistics and results of comparison between NCF of the three systems with each sterilization cycle	64
Table 6: Descriptive statistics and results of comparison between NCF without and with sterilization cycles for each system.	66

uccessful endodontic treatment is based on comprehensive knowledge of the complex anatomy and morphology of the root canals, thorough diagnosis, suitable treatment planning, the standardized concepts of debridement, optimized disinfection and a well-sealed root canal system apically as well as coronally.

Endodontic therapy has been compared to a chain, wherein the chain is only as strong as each individual link. Shaping and cleaning of the root canal system is considered a decisive link, because shaping determines the efficacy of subsequent procedures.

Mechanical objectives for canal preparations were brilliantly outlined forty years ago by Dr. Herbert Schilder⁽¹⁾. Mechanical debridement, creation of space for the delivery of medicaments and irrigants and optimized canal geometries for adequate obturation have become easier, faster with more predictable and consistent preparations with less procedural errors since the breakthrough of rotary endodontic nickel titanium instruments with the beginning of the 1990s.

hand-pieces first introduced Although were for endodontics in 1889 by William H. Rollins, they did not gain any popularity while utilizing the rigid stainless-steel endodontic instruments (1). Recently, rotary endodontic motors have become an essential armamentarium in endodontic practice. This is owed to the introduction of the exotic nickel titanium alloy (nitinol/ Ni-Ti) by Walia et al in 1988⁽³⁾. Ni-Ti alloy exists in two crystalline structures, austenite the mother phase and martensite the twinned daughter phase; transitions from one crystal lattice to the other give Ni-Ti alloy its superelasticity and shape memory character. Its high flexibility is critical for rotary endodontic files for two reasons. It enhances centering ability of the instrument, yet subjects it to cyclic fatigue.

The major concern expressed by dentists using endodontic Ni-Ti rotary instruments is the fear of fracture. The fracture may happen due to cyclic fatigue, torsional failure, both, or as Alapati et al ⁽⁴⁾ hypothesized, due to a single overload incidence that causes a ductile fracture after a large number of loading cycles rather than causing an alloy fatigue.

It has been suggested that Ni-Ti shape memory and superelastic properties are strongly dependent on the thermo-mechanical processing history of the manufactured product, and consequently it has been reported that the additional heat treatment of Ni-Ti instruments during autoclave sterilization might increase their flexibility ⁽⁵⁾. It has also been suggested by Serene et al ⁽⁶⁾, that sterilization of used rotary Ni-Ti above 125° C might reverse their deformation.

Many researchers have studied the effect of sterilization on the mechanical properties (including cyclic fatigue failure, torsional failure and cutting efficiency) of endodontic rotary Ni-Ti instruments, but only few researches were found regarding the effect of autoclave sterilization on the cyclic fatigue behavior. Therefore the effect of autoclave sterilization on the cyclic fatigue resistance of three of the rotary Ni-Ti systems available in the market (ProTaper, Revo-S and NRT), was thought to be of value.