# Effect of incorporation of a bacterial inhibitor into Calcium Hydroxide as temporary cement on antibacterial activity and retention of provisional crowns

(An in vitro study)

A Thesis

submitted to

The Faculty of Oral and Dental Medicine,

Cairo University

In Partial Fulfillment of the Requirements of the

Master Degree

in

**Fixed Prosthodontics** 

By

## Khalil Wesal Al-Awad

B.D.S, October 6 University, 2005

Faculty of Oral and Dental Medicine
Cairo University

2009

# **SUPERVISORS**

Dr. Omaima S. El-Mahallawi

Professor of Fixed Prosthodontics

Faculty of Oral and Dental Medicine

Cairo University

**Dr. Gihan Abd El-Hady El-Naggar**Ass. Professor of Fixed Prosthodontics
Faculty of Oral and Dental Medicine
Cairo University

## ACKNOWLEDGEMENT

First and foremost, I fell indebted to **Allah**, the most kind and merciful who allowed me to accomplish this work.

My greatest sincere gratitude and deep appreciation to **Dr. Omaima El Mahallawi** professor of Fixed Prosthodontics, Faculty of Oral and Dental Medicine, Cairo University, for giving me the honor of working under her supervision, great help, valuable advices and kind encouragement during this study. Her intellectual and constructive opinions were essential to dress this work in its final form.

I cannot find sufficient words to express my gratitude to **Dr. Gihan Abd El-Hady El-Naggar** Ass. Professor of Fixed Prosthodontics
Department, Faculty of Oral and Dental Medicine, Cairo University for
her valuable and faithful guidance and encouragement and for her kind
help and useful remarks; she willingly gave me during my work.

I am greatly in debt to **Dr. Somaya Abd El-Lateef** professor of Bacteriology, at Bacteriology department, Faculty of Medicine, Cairo University, for her generous support and guidance.

Last but not least, I would like to thank the head of Fixed Prosthodontics Department, Faculty of Oral and Dental Medicine and all the staff members of the department for their support throughout the stages of my master degree.

# **Dedication**

To my great **Father**, who was the reason for where I am today, and without his support and encouragement, this work would have not been possible.

To my dear **Mother**, who was always supporting me since first year of school.

To my lovely **Brothers** Abd Al-Mohsen, Ahmad, Mostafa and Yasmeen.

To my best **Friends** Bassam, Mashoor, Islam and all my friends for their love and support.

# LIST OF CONTENTS

| List of Tables          | (i)  |
|-------------------------|------|
| List of Figures         | (ii) |
| Introduction            | 1    |
| Review of Literature    | 3    |
| Aim of the study        | 42   |
| Materials and Methods   | 43   |
| Results                 | 73   |
| Discussion              | 95   |
| Summary and Conclusions | 104  |
| References              | 106  |
| Arabic Summary          |      |

# LIST OF TABLES

| Table<br>No. | Title                                                           | Page<br>No. |
|--------------|-----------------------------------------------------------------|-------------|
| 110.         |                                                                 | 110.        |
| Table 1      | Materials used in the study                                     | 43          |
| Table 2      | Mean tensile strength values of powder samples                  | 74          |
| Table 3      | Mean tensile strength values of paste samples                   | 76          |
| Table 4      | Mean tensile strength values of control samples                 | 78          |
| Table 5      | Mean tensile strength values of testing samples                 | 80          |
| Table 6      | Mean tensile strength values of all groups and sub-<br>groups   | 82          |
| Table 7      | Mean anti-bacterial effect values of powder samples             | 84          |
| Table 8      | Mean anti-bacterial effect values of paste samples              | 86          |
| Table 9      | Mean anti-bacterial effect values of control samples            | 88          |
| Table 10     | Mean anti-bacterial effect values of testing samples            | 90          |
| Table 11     | Mean anti-bacterial effect values for all groups and sub-groups | 92          |

# LIST OF FIGURES

| Figure<br>No. | Title                                                                 | Page<br>No. |
|---------------|-----------------------------------------------------------------------|-------------|
| Figure 1      | Samples classification                                                | 44          |
| Figure 2      | The collected teeth stored in a jar containing double distilled water | 46          |
| Figure 3      | Diagram shows the preparation performed in the root                   | 48          |
| Figure 4      | Plastic ring mold                                                     | 49          |
| Figure 5      | Forming of the acrylic resin block                                    | 49          |
| Figure 6      | Plastic mold ( provisional crown former)                              | 51          |
| Figure 7      | Anchoring metal screw                                                 | 51          |
| Figure 8      | Sinfony composite crown                                               | 52          |
| Figure 9      | Provisional crowns                                                    | 52          |
| Figure 10     | chlorohexidine digluconate and the dispensing bottle                  | 54          |

| Figure 11 | Calcium hydroxide powder            | 56 |
|-----------|-------------------------------------|----|
| Figure 12 | Calcium hydroxide paste             | 56 |
| Figure 13 | Electronic balance                  | 57 |
| Figure 14 | Diagram showing cementing device    | 59 |
| Figure 15 | Cementing device                    | 60 |
| Figure 16 | Universal testing machine           | 61 |
| Figure 17 | Blood agar plates                   | 63 |
| Figure 18 | The incubator                       | 63 |
| Figure 19 | Bacteriological loop                | 65 |
| Figure 20 | Pattern formed on blood agar plates | 65 |
| Figure 21 | Specially constructed Teflon mold   | 68 |
| Figure 22 | Dispensing syringe                  | 71 |
| Figure 23 | Different tips used                 | 71 |

| Figure 24 | Sterile glass rods                                                                                          | 72 |
|-----------|-------------------------------------------------------------------------------------------------------------|----|
| Figure 25 | Histogram showing mean tensile strength values of calcium hydroxide powder                                  | 75 |
| Figure 26 | Histogram showing mean tensile strength values of calcium hydroxide paste                                   | 77 |
| Figure 27 | Histogram showing mean tensile strength values of calcium hydroxide powder and paste (control group)        | 79 |
| Figure 28 | Histogram showing means tensile strength values of calcium hydroxide powder and paste (testing group)       | 81 |
| Figure 29 | Histogram showing mean of tensile strength values of all tested samples                                     | 83 |
| Figure 30 | Histogram showing mean of antibacterial effect values of calcium hydroxide powder                           | 85 |
| Figure 31 | Histogram showing mean of antibacterial effect values of calcium hydroxide paste                            | 87 |
| Figure 32 | Histogram showing mean of antibacterial effect values of calcium hydroxide powder and paste (control group) | 89 |

| Figure 33 | Histogram showing means of antibacterial effect values of calcium hydroxide powder and paste (testing group) | 91 |
|-----------|--------------------------------------------------------------------------------------------------------------|----|
| Figure 34 | Histogram showing mean of antibacterial values of all tested samples                                         | 93 |
| Figure 35 | Zone of inhibition around the tested samples                                                                 | 94 |

## **INTRODUCTION**

Along the way, the dentist utilizes a variety of treatment methods to ensure patient comfort and interim stabilization of the restored areas. In fixed prosthodontics the role of provisional restorations cannot be overemphasized. Provisional restorations help to maintain comfort and stability of the restored abutments. Vital teeth are protected and treating dentist is able to evaluate the occlusal design and stability before the definitive restorations are delivered. Provisional restorations have been described as the blueprints for definitive restorations. Well-designed provisional restorations will maintain patient comfort and stability during the treatment phase and will serve as a guideline for the design of the definitive restorations from a functional and esthetic standpoint.

Provisional and permanent restorations may be placed with provisional cement for an extended period especially in cases of oral rehabilitation. Since provisional crowns luted with provisional cements are susceptible to cement washout, marginal leakage, bacterial infiltration, and caries, especially when placed for longer than a few weeks, the luting agent should also have good mechanical properties, low solubility, and good adhesion to resist bacterial and molecular penetration.

Permanent and provisional restorations cemented with temporary cement need to provide biologic and mechanical protection for the abutments. A temporary cement must be strong enough to retain the restoration but weak enough to enable removal of the restoration without damage to the abutment.

Protection of the prepared tooth while the prosthesis is being made is important for the long-term success of the therapy. Freshly exposed dentine is initially protected by the provisional restoration. After properly disinfecting and sealing the dentinal substrate, it is fixed by means of a provisional cement, which gives retention and a certain degree of marginal seal.

A temporary cement with good retentive qualities and antibacterial effect is required for use with the long term provisional restorations.

Chlorhexidine is well-known for binding to buccal epithelial cells, proteins (mucin and albumin) and teeth (hydroxyapatite), a phenomenon which explains its long period of retention in the mouth. Once released into saliva, chlorhexidine is in equilibrium with the matrix of the saliva, consisting mainly of mucin, albumin and some salts. This interaction is very important because only the free concentration is available for antimicrobial effect.

In an attempt to protect teeth from bacteria, studies have examined the possibility of adding antibacterial agents to dental materials. Chlorhexidine added to restorative dental materials to enhance its antibacterial properties has received much attention. Chlorhexidine is a highly effective, broad-spectrum anti-microbial agent. Since chlorhexidine has a strong cationic activity, it is absorbed into the bacterial cell wall, which is negatively charged, causing its disruption.

Consequently this study aimed at studying the effect of incorporation of a bacterial inhibitor(CHX) into Calcium hydroxide as temporary cement on antibacterial activity and retention of provisional crowns.

### **REVIEW OF LITERATURE**

Clinical situations may dictate the need for long-term provisional restorations. During the initial treatment phase, periodontic, orthodontic, or diagnostic procedures may be required prior to the definitive restorative phase. Therefore, provisional restorations may be placed with provisional cement for an extended period. Since provisional crowns luted with provisional cements are susceptible to cement washout, marginal leakage, bacterial infiltration, and caries, especially when placed for longer than a few weeks, the luting agent should also have good mechanical properties, low solubility, and good adhesion to resist bacterial and molecular penetration.

The most important function of temporary cement is to provide a seal, thus, preventing marginal leakage and pulpal irritation. The retentive requirements for temporary cement are to be only strong enough to retain the provisional restoration but allow easy removal of the crown when necessary, and not become more retentive over time. Little is known regarding temporary cement retention. Although there is a strong relationship between the compressive strength and retentive properties of temporary cements, other cement properties, such as film thickness, play a role. Aging has also been shown to decrease the retentive properties of some temporary cements. It was once thought that a thinner consistency mix would result in greater retention as the cement would be able to flow into the surface irregularities of both the tooth and restoration. By modifying the powder/liquid ratio of the powder/liquid-type cements or by the addition of a modifier to the paste-type cements, it is possible to alter their compressive strength and retentive properties.

Ideal luting agents (permanent and temporary) should have suitable mechanical properties, physically stable and the most important should have antimicrobial activity. It should be obvious that no such ideal product exist. Different types of temporary cements were used in dentistry. (1)

#### A .Provisional Luting cements:

Retentive strength:-

#### **Zinc-oxide eugenol cement:**

Zinc oxide eugenol (ZOE) cements were introduced in 1980's. The powder is mainly zinc oxide and the liquid is eugenol with olive oil as a plasticizer. Cements based on zinc oxide and eugenol cause virtually no pulpal inflammation as long as they make no direct contact with the pulp although it has a sedative action on tissues. They have long been used as temporary cements. Attempts have been made to create more biocompatible permanent cements by adding o-ethoxy-benzoic acid (EBA) to zinc oxide eugenol and by reinforcing it with aluminum oxide and poly (methyl methacrylate). Zinc oxide eugenol cements are still used largely for provisional cementation. Combining zinc oxide and eugenol (contained in oil of cloves) forms zinc oxide eugenol which can be used as a filling or cement material used in dentistry. It is classified as an intermediate restorative material and has anaesthetic and antibacterial properties. It is sometimes used in the management of dental caries as a "temporary filling". classification- according to ADA specification no. 30 Type I temporary cementation Type II permanent cementation Type III temporary filling material and thermal insulation and Type IV cavity liners.

#### **Eugenol free cement:**

It has been used as eugenol cause polymerization retardation, which cause rubbery consistency especially when used with polymer based temporary crowns. Many studies revealed that eugenol affect bond strength of post and permanent restoration especially if cemented with resin cement.

#### **Calcium hydroxide:**

It is a chemical compound with the chemical formula Ca(OH)<sub>2</sub>. It is a colourless crystal or white powder or even as two pastes. Calcium hydroxide is a low strength base that can be used as a liner, intermediary base or pulp-capping agent. They are supplied as two pastes: a base, and a catalyst containing calcium hydroxide and zinc oxide. Recently many studies revealed that calcium hydroxide can be used as temporary cement. These studies compared the mechanical properties of other known temporary cements with calcium hydroxide and found that calcium hydroxide is better. It is known that calcium hydroxide is highly alkaline which make it bactericidal as it can lower the PH of acids produced from micro-organisms.

Lewinstein et al, in 1992<sup>(2)</sup> studied the effect of fluoride varnish (Duraphat) on the retentive strength of provisional crowns luted with various temporary cements. They found that applying Duraphat varnish to the tooth surface before cementation enhanced the retentive strength of Tempbond, weakened the retention of Freegenol, but had no effect on Opotow cement. A "transfer effect" was observed, inasmuch as the Duraphat varnish encouraged adherence of the cement to the tooth structure rather than to the temporary crown.

Baldissara et al, in 1998<sup>(3)</sup> evaluated the marginal microleakage of 4 provisional cements, a cavity base compound and a zinc-phosphate luting cement in provisional acrylic resin crowns fixed on extracted human teeth. A high dye penetration in the tooth/cement interface was present in all 4 provisional cements. They concluded that all materials tested demonstrated different degrees of microleakage. Zinc-phosphate and cavity base compound