The Association between the Circulating B-cell Activating Factor Serum Level and B-cell Chronic Lymphocytic Leukemia

Thesis

Submitted in partial fulfillment of the Master Degree in Clinical and Chemical Pathology

By

Dalia Mohammed Ellabban

M.B,B.ch. Ain ShamsUniversity

Under Supervision of

Professor/ Soha Ezz Elarab Abd Elwahab

Professor of Clinical and chemical pathology Faculty of Medicine – Ain-Shams University

Doctor/ Mahira Ismail Elmougy

Assistant professor of Clinical and chemical pathology Faculty of Medicine – Ain-Shams University

Faculty of Medicine
Ain Shams University
2014

Acknowledgements |

First, and foremost, my deepest gratitude and thanks should be offered to "ALLAH", the most kind and most merciful, for giving me the strength to complete this work.

I would like to express my sincere gratitude to Professor/ Soha Ezz Elarab Abd Elwahab, Professor of Clinical and chemical Pathology, Faculty of Medicine – Ain-Shams University, for her continuous support and guidance for me to present this work. It really has been an honor to work under her generous supervision.

I acknowledge with much gratitude to Doctor/ Mahira Ismail Elmougy, Assistant professor of Clinical and Chemical Pathology, Faculty of Medicine – Ain-Shams University, for her great supervision and unlimited help to provide all facilities to accomplish this work.

I can't forget thank all members of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for their help and support.

Last but not least, thanks to my Parentsand my Husbandfor helping me to finish this work.

ODalia Mohammed Ellabbar

List of Contents

Subject	Page No.
ListofAbbreviations	i
List of Tables	ii
List of Figures	iii
Introduction	1
Aim of the Work	3
Review of Literature	
Chronic Lymphocytic Leukemia	4
B-cell activating factor (BAFF)	31
Subjects and Methods	49
Results	57
Discussion	77
Summary	84
Conclusion	87
Study Limitations	88
Recommendations	89
References	90
Appendix	I
Arabic Summary	

List of Abbreviations

ABC : Avidin-Biotin-Peroxidase Complex

ALC:Absolute lymphocytic count

BAFF : B-cell activating factor **b2-MG** : Beta 2 micorglobulin

bc1-xL : B-cell lymphoma-extra-large

B-CLL: B-cell chronic lymphocytic leukemia

BCMA : B-cell maturation antigen
BLyS : B-lymphocyte stimulator

CLL : Chronic lymphocytic leukemia

CRD : Cysteine-rich domain

CSR : Class switch recombinationDTH : Delayed type hypersensitivity

EBV : Epstein Barr virus

EDTA : Ethylene Diamine Tetraacetic AcidELISA : Enzyme-linked immunosorbent assay

FAB : French American British **FCL** : Follicular cell lymphoma

FISH : Fluorescence in situ hybridization

FL : Follicular lymphomaHCL : Hairy cell leukemiaHCV : Hepatitis C virus

IWCLL: International Workshop on Chronic Lymphocytic

Leukemia

LDH : Lactate dehydrogenase

LDT : Lymphocyte doubling time

MCL : Mantle-cell lymphoma

List of Abbreviations (Cont...)

Mcl-1 : Myeloid leukemia cell differentiation protein

MM : Multiple myeloma

MPC : Antigen presenting cells

NHL: Non-Hodgkin's lymphoma

PBC: Primary biliary cirrhosis

PLL: Prolymphocytic leukemia

RA : Rhumatoid arthritis

SF : Synovial fluids

SG : Salivary gland

SIg : Surface immunoglobulin

SjS : Sjogren syndrom

SLE : Systemic lupus erthrematosis

SLVL : Splenic lymphoma with villous lymphocytes

s-TK : Serum thymidine kinase activity

TLR : Toll like receptor

ZAP-70 : Zeta associated protein 70

List of Tables

Table N	o. Title Page No.
Table (1):	Scoring system for the diagnosis of chronic lymphocytic leukemia
Table (2):	CLL score in B-cell disorders
Table (3):	Rai clinical stage system
Table (4):	Binet clinical stage system
Table (5):	Stratification of CLL patients in risk group according to prognostic factors
Table (6):	Immunophenotyping of chronic lymphoprolefrative disorders
Table (7):	Specific functions of BAFF-R, TACI and BCMA on human and murine B cells:
Table (8):	Demographic data in both groups
Table (9):	Laboratory investigation in both groups
Table (10):	BAFF values in both groups
Table (11):	BAFF values and Binet staging system 65
Table (12):	Clinical features of Binet Staging System subgroups 66
Table (13):	Age and Binet subgroups
Table (14):	Laboratory investigation and Binet staging system 67
Table (15):	Correlation between BAFF and laboratory data
	among patients
Table (16):	Correlation between Binet Staging system and
	laboratory among patients
Table (17):	BAFF validity as a predictive marker for B- CLL
	cases

List of Figures

Figure No	o. Title	Page No.
Figure (1):	Blood film. Classical picture of lymphocytic leukemia (CLL) [.40x]	
Figure (2):	Blood film, prolymphocytic cells.[oil lens]	
Figure (3):	Marrow biopsy section. CLL. [10x]	15
Figure (4):	BAFF and TNF structure.	32
Figure (5):	BAFF and APRIL bind to multiple receptor	ors 34
Figure (6):	Effects of BAFF on various immune cells.	38
Figure (7):	Sandwich ELISA	52
Figure (8):	BAFF values in both groups	64
Figure (9):	BAFF values in Binet Staging System sub	groups 65
Figure (10):	ROC curve of BAFF	70
Figure (11):	ROC curve showing the sensitivity and spof BAFF	
Figure (12):	Positive correlation between BAF hemoglobin level.	
Figure (13):	Inverse correlation between BAFF and TL	.C 71
Figure (14):	Positive correlation between BAFF and count	_
Figure (15):	Inverse correlation between BAFF a infiltration	
Figure (16):	Positive correlation between BAFF and Cl	D5 73
Figure (17):	Inverse correlation between BAFF and sIg	M73
Figure (18):	Inverse correlation between Binet staging and hemoglobin level	~ •

List of Figures (Cont...)

Figure N	o. Title	Page	No.
Figure (19):	Inverse correlation between Binet staging and platelet count.	•	. 74
Figure (20):	Positive correlation between Binet staging and BM infiltration	•	. 75
Figure (21):	Inverse correlation between Binet staging and CD5.	•	. 75
Figure (22):	Inverse correlation between Binet staging and CD23	•	. 76
Figure (23):	Inverse correlation between Binet staging and serum creatinine	•	. 76

Introduction

B-cell chronic lymphocytic leukemia (B-CLL) constitutes the most prevalentleukemia in Western countries (*Tam and Keeting, 2010*), and it is an incurable disease characterized by extensive clinical heterogeneity despite a commondiagnostic immunophenotype [small mature B cells display CD19+, CD20+, CD5+, CD23 markers] (*Wang, et al., 2011*).

A small pool of highly proliferating cells has been detected in the lymph nodes and bone marrow that feed the pool of leukemic cells in the blood, 95–98% of these cells being arrested at the G0 stage of the cell cycle (*Zenz*, *2010*). Therefore, their accumulation mostly results from a deficient apoptosis rather than from an acute proliferation (*Wong*, *2011*).

Whether defects in the apoptotic pathway are frequently encountered in a variety of cancers, B-CLL represents a paradigm of the tumors that arise as a consequence of alterations in the processes leading to programmed cell death (*Haiat et al., 2006*). Indeed, B-CLL cells display multiple intrinsic defects in their apoptotic machinery and dysregulated production of survival signals from their microenvironment (*Burger, 2011*).

B-cell activating factor(BAFF) is a molecule that identified by sequence homology with the TNF superfamily members, also named BLyS (B-lymphocyte stimulator) because it induces B lymphocyte proliferation and immunoglobulin secretion. It is also known as THANK (TNF homologue that activates apoptosis, nuclear factor-jB and c-junN-terminal kinase) (*Bienertova-Vasku et al.*, 2012).

BAFF and its receptor play a key role in the survival and differentiation of B cells. They therefore provide not only a new insight into the development of autoreactive B cells, but also a paradigm to the interaction between survival, growth and death affecting all cells (*Maia et al.*, 2011).

Aim of the Work

The aim of this work is to investigate the association between the circulating BAFF serum level and B-cell Chronic LymphocyticLeukemia by ELISA technique.

Chronic Lymphocytic Leukemia

Chronic lymphocytic leukemia (CLL) is a neoplasm of mature-appearing monoclonal B-lymphocytes co-expressing the CD5 antigen and B-cell surface antigen CD19 and CD23 with weak expressing surface immunoglobulin and CD79b compared with those found on normal B-cells.(*Hallek et al.*,2008). Primarily CLL involves the bone marrow, peripheral blood and may infiltrate lymphoid tissue such as lymph nodes and spleen (*Gachard et al.*, 2008).

EPIDEMIOLOGY

The B-CLL is the most common adult leukemia in western societies and it accounts for approximately one-third of all adult leukemias in the United States (Siegel et al., 2013). In Egypt, CLL represents 11.9% of all leukemias (Egypt National Cancer Registry, 2009), while in Asian countries, it represents only 5% of leukemias, with the T-cell phenotype predominating. This geographic difference in incidence is most likely the result of genetic factors (O'Brien and Keating, 2005).

Chronic lymphocytic leukemia develops mostly in the aging population, as it reported in Cancer statistics 2010, the median age of patients with CLL enrolled in most clinical trials is about 60 years(*Jemal et al.*,2010), only 10% to 15% of patients are younger than 50 years at the time of diagnosis. CLL

is a male-predominant disease (1.3–1.5:1) although the relative rate in femalesincreased with age(*Seftel et al.*,2009).

CLL is a heterogeneous disease as reflected by its highly variable natural history, ranging from indolent to aggressive clinical course(*Rai*, 2008).

ETIOLOGY

A- Environmental:

In rural areas CLL is more frequent because of the involvement of agricultural chemicals also in farming communities there is association between B-CLL and exposure to pesticides(*Nanni et al., 1996*). Others suggest that the environmental factors do not appear to play a role in the pathogenesis of B-CLL (*Wierda et al., 2007*).

B-Infections:

Antibodies specific for type C hepatitis virus (HCV) and/or viral RNA have been identified in some patients, suggesting a pathogenic role (*La Civita et al.*, 1996). However other studies have failed to verify an association between the development of CLL and infection with HCV (*McColl et al.*, 1997). Chronic lymphocytic leukemia cells are resistant to infection with Epstein Barr virus (EBV), except in unusual cases, making it unlikely that EBV plays a pathogenic role (*Avila-Carino et al.*, 1997).

C- Hereditary and Genetic Factors:

Although most cases of CLL are sporadic, a subset of B-CLL is familial (*Summersgill*, 2002). First degree relatives of

patients with CLL are more than three times at risk for having this disorder or other lymphoid neoplasms than the general population and often present at a younger age (*Cuttner*, 1992).