

Diagnosis and Management of Chronic Mesenteric Ischaemia

Essay

Submitted for the Partial Fulfillment of Master Degree of General Surgery

By

Mustafa Fouad Ismail EL-Masry

M.B.B.CH Kasr Al-Ainy Faculty of Medicine

Under the supervision of

Prof. Dr. Hesham Abd El-Raouf EL-Akkad

Professor of General Surgery Ain Shams Faculty of Medicine

Dr. Mohamed Ibrahim Hassan

Lecturer of General Surgery Ain Shams Faculty of Medicine

Faculty of Medicine Ain Shams University 2017

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Wesham Abd El-Raouf El-Akkad**, Professor of General Surgery, Ain Shams Faculty of Medicine, for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Mohamed Ibrahim****Thassan*, Lecturer of General Surgery, Ain Shams Faculty of Medicine, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Mustafa Fouad Ismail EL-Masry

List of Contents

Title	Page No.
List of Tables	5
List of Figures	6
List of Abbreviations	9
Introduction	1
Aim of the Work	5
1. Anatomy of Intestinal Blood Supply	6
2. Pathophysiology of Chronic Mesenteric Ischemia	43
3. Presentation and Diagnosis of Chronic Mese Ischaemia	
4. Management of Chronic Mesenteric Ischaemia	77
Summary	125
References	128
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Advantages and disadvantages of D Ultrasonography	-
Table (2):	Advantages and disadvantages of Comptomographic angiography (CTA)	•
Table (3):	Advantages and disadvantages of Mag Resonance Angiography (MRA)	•
Table (4):	PTA and stent vs open surgery	85
Table (5):	Patient outcome after open mesenteric a reconstruction	v
Table (6):	Contemporary PTA and stent results	123

List of Figures

Fig. No.	Title	Page	No.
Figure (1-1):	Embryology of normal and variant meso vascular anatomy		9
Figure (1-2):	Celiac artery anatomy and superior mesorartery collaterals		14
Figure (1-3):	Gastric and bowel collateral networks		15
Figure (1-4):	Celiac artery and superior mesenteric collaterals	-	16
Figure (1-5):	Superior mesenteric artery and in mesenteric artery anatomy and collaterals.		20
Figure (1-6):	Coronal 3D multi-detector row CT demonstrates the normal anatomy and bran pattern of the SMA	nching	23
Figure (1-7):	Arc of Riolan. 3D CT angiographic image a renal arteries images removal		28
Figure (1-8):	Celiac artery anatomic variants		
Figure (1-9):	Superior mesenteric artery anatomic variar		
Figure (1-10):	Portal venous system and drainage of GIT		
Figure (1-11): Fo	primation of the portal vein behind the neck		41
Figure (2-1):	Barium swallow showing a late iso stricture in the proximal jejunum	chemic	
Figure (2-2):	Mesenteric artery circulation and co collateral pathways in patients with occlusive mesenteric artery disease	mmon severe	
Figure (3-1):	Typical patient with chronic mesor ischemia with significant weight loss cachexia	enteric s and	
Figure (3-2):	Mesenteric duplex ultrasound with norm abnormal waveform patterns during the state	al and fasting	

List of Figures (Cont...)

Fig. No.	Title Page	No.
Figure (3-3):	3D CT angiographic image after the renal arteries images removal in a 64-year-old woman with chronic pancreatitis and suspected pancreatic head adenocarcinoma	70
Figure (3-4):	3D reconstruction of aorta, mesenteric, and renal vessels from MRA raw data. Stenoses of the CA and SMA are clearly seen	71
Figure (3-5):	Tonometer balloon placed in the stomach nasogastrically	
Figure (3-6):	Lateral projection aortogram with proximal mesenteric vessels (CA and SMA)	76
Figure (4-1):	CTA showing anatomic characteristics of the superior mesenteric artery which used to identification of the procedure	85
Figure (4-2):	Transperitoneal exposure of the supraceliac aorta and the celiac artery	
Figure (4-3):	A: The superior mesenteric artery is exposed through a longitudinal midline incision in the retroperitoneal tissue immediately inferior to the border of the pancrease	
Figure (4-4):	The inferior mesenteric artery is exposed by incising the posterior peritoneum below the mobilized duodenum, staying to the right of midline	100
Figure (4-5):	Transaortic visceral artery endarterectomy and completion superior mesenteric endarterectomy	
Figure (4-6):	The steps of performing a supraceliac-based reconstruction to the celiac and superior mesenteric arteries are illustrated	
Figure (4-7):	A retrograde bypass of the ilio-SM artery	109

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figure (4-8):	Hybrid revascularization with re stenting of the superior mesenteric ar midline laparotomy	tery via
Figure (4-9):	Neither the celiac artery nor the mesenteric artery is visualize anteroposterior	d on
Figure (4-10):	Angioplasty and stenting of a focal ste the superior mesenteric artery (SMA brachial approach	nosis of a) by a
Figure (4-11):	An important technical point is to visualiz of the guide wire during the intervention position the guide wire in the main trun	n and to k of the
	superior mesenteric artery	121

List of Abbreviations

Abb.	Full term
3D:	Three-dimensional
A:	
	Anterior inferior pancreaticoduodenal artery
	Acute mesenteric ischemia
	$Arc\ of\ Riolan$
	Accessory right hepatic artery
	Accessory right hepatic artery;
	Anterior superior pancreaticoduodenal artery,
	Celiac artery
<i>CABG</i> :	Coronary artery bypass graft surgery
<i>CAD</i> :	Coronary artery disease
<i>CHA</i> :	Common hepatic artery;
<i>CKD</i> :	Chronic kidney disease
<i>CMI</i> :	Chronic mesenteric ischemia
<i>CPA</i> :	Caudal pancreatic artery
<i>CT</i> :	Celiac trunk
<i>CT</i> :	Computed tomography
CTA:	$ Computed\ tomography angiography.$
CTO:	Chronic total occlusions
CVD:	Cardiovascular disease
<i>DM</i> :	Diabetes mellitus
<i>DPA</i> :	Dorsal pancreatic artery,
DSA:	Digital subtraction angiography
DUS:	Duplex ulrasonography
<i>ECG</i> :	Electrocardiogram
<i>ER</i> :	$Endova scular \ revascular ization.$
<i>ET</i> :	$Endoscopic\ treatment$
	Gastroduodenal artery
<i>IC</i> :	Ileocolic artery,

List of Abbreviations (cont...)

Abb.	Full term
<i>i-FABP</i> :	Intestinal Fatty Acid Binding Protein
	Inferior mesenteric artery
	Left colic artery,
	Lactate dehydrogenase
	Left gastric artery
	Middle colic artery
<i>MI</i> :	Myocardial infarction
	Magnetic resonance angiography
OR:	Open revascularization
	Open treatment
PCI:	Percutaneous coronary intervention
PIPD:	.Posterior inferior pancreaticoduodenal artery
<i>PM</i> :	Pancreata magna
<i>PSV</i> :	.Peak systolic velocity
<i>PTA</i> :	.Percutaneous transluminal angioplasty
<i>RC</i> :	Right colic artery
<i>RGE</i> :	Right gastroepiploic artery,
<i>SA</i> :	Sigmoid artery
<i>SA</i> :	Splenic artery
<i>SMA</i> :	.Superior mesenteric artery
SR:	Superior rectal artery
SVS:	Society of vascular surgery
<i>TIA</i> :	Transient ischemic attack
<i>TP</i> :	Transverse pancreatic artery
<i>TPN</i> :	.Total parenteral nutrition

Abstract

Since 1958, Open treatment (OT) of symptomatic CMI has been the gold standard of management. However, nowadays, mesenteric angioplasty and stenting is the first choice of treatment in patients with CMI who have suitable lesions, independent of their clinical risk. The ideal lesion for angioplasty and stenting is a short, focal stenosis or occlusion with minimal to moderate calcification or thrombus.

The decision between open surgical (OS) and endovascular therapy (ET) is nuanced and a careful review of preprocedure CTA with attention to lesion anatomy, nutritional status, and life expectancy. ET is generally preferred as a first choice of treatment for CMI given the low rates of preoperative morbidity and mortality compared to OS.

In most recent results of studies about the management of CMI clarified that ER has similar preoperative mortality and shorter hospitalization but higher rate of restenosis requiring reintervention compared with OR. Patients with ER who required reintervention appear to have longer lesions as well as higher rates of aortic occlusive disease on preoperative angiography. Patients crossed over from ER to OR had higher preoperative mortality than either primary open or endovascular patients. These findings may guide treatment selection in patients with CMI undergoing ER or OR.

Keywords: Superior rectal artery- Superior mesenteric artery- Splenic artery- Sigmoid artery- Peak systolic velocity- Myocardial infarction

Introduction

esenteric ischemia occurs when perfusion of the visceral organs fails to meet normal metabolic requirements. This disorder is categorized as either acute or chronic, based on the duration of the symptoms. Acute mesenteric ischemia (AMI) occurs rapidly over hours to days and frequently leads to acute intestinal infarction requiring resection. The most common causes are embolization to mesenteric arteries or acute thrombosis related to a preexisting plaque. Chronic mesenteric ischemia (CMI) is a more insidious process and progresses over weeks to several months. The most common cause is progressive occlusive disease of the visceral arteries, usually related to atherosclerosis. It is often unrecognized by physicians and is frequently misdiagnosed as a gastrointestinal disorder (Ruby and Marc, 2014).

mesenteric ischemia (CMI) fairly uncommon disease that accounts for only 5 % of all cases of ischemic compromise of the gastrointestinal tract (Stangenberg and Schermerhorn, 2015), that is usually the result of atherosclerotic obstructive disease affecting the mesenteric arteries. The classic triad of post-prandial pain, food aversion and weight loss is not always present, often leading to low clinical suspicion for CMI and underdiagnosis. Non-invasive evaluation for CMI usually starts with mesenteric arterial duplex scanning, followed by computed tomography

angiography (CTA), magnetic resonance angiography (MRA) or conventional angiography, the latter being the gold standard for establishing its diagnosis. However, angiography alone has been demonstrated in coronary and other vascular beds to be inaccurate in predicting the physiologic and hemodynamic significance of a certain subset of atherosclerotic stenosis (Sadiq et al., 2014).

In those older than 60 years atherosclerotic plagues are the most common cause of stenosis of the mesenteric arteries, with females affected three times more often than males (Loffroy et al., 2009). However, fibromuscular dysplasia is the most common cause in children and young adults (Slovut and Olin, 2004).

Since the first successful mesenteric endarterectomy by Shaw and Maynard in 1958, significant progress has been made in the diagnosis and treatment of mesenteric vascular diseases, improvements in imaging modalities, medical therapy, and open and endovascular reconstruction have allowed treatment of acute and chronic mesenteric artery diseases with satisfactory results. Yet, delay in diagnosis remains a major problem given that mesenteric diseases are uncommon and often present with unspecific symptoms (Oderich and Rochester, 2015).

CTA is an emerging diagnostic test with high sensitivity and specificity in the setting of both acute and chronic mesenteric ischemia and should be considered the first-line imaging test. CT can also accurately assess for other causes of acute and chronic abdominal pain, and it provides excellent anatomic mapping of the mesenteric vasculature, which is essential in the preoperative planning. However; conventional angiography is the gold standard test for patients with acute and chronic mesenteric ischemia except for hemodynamically unstable patients with acute mesenteric ischemia (*Oliva et al.*, 2013).

Patients are initially treated with conservative therapy including bowel resting, smoking cessation, and administration of vasodilator drugs. Revascularization is considered if these conservative treatments fail to relieve the symptoms (*Shirasu et al.*, 2013).

The gaols of revascularization in patients with symptomatic chronic mesenteric ischemia are to relieve symptoms, improve the nutritional status, and prevent intestinal infarction (*Kasirajan et al., 2000*).

In the past, abdominal bypass surgery was the primary treatment option for CMI; however, many of these patients have a high risk due to poor general state of health or severe concomitant disease. Thus bypass surgery is associated with a high perioperative morbidity and mortality and, therefore, is often unfeasible (Luther et al., 2011 & Penugonda et al., 2009).

The decision between endoscopic treatment (ET) and open treatment (OT) in patients with CMI should be based on lesion anatomy and nutritional status as well as life expectancy. Considering the better results in terms of perioperative mortality and morbidity with ET it should be used as first approach whenever possible. Although primary, secondary, and clinical patency rate favors OT, no difference in survival rates between the two treatment groups was found (Pecoraro et al., 2013).