

Ain Shams University Faculty of Science Entomology Department

Effect of some photosensitizing compounds on the house fly, *Musca domestica* (Muscidae: Diptera) as a control approach

A Thesis

Submitted to the Faculty of Science, Ain Shams University in partial fulfillment for the award of M.Sc. degree (Entomology)

BY

Radwa Gehad Mohamed Attia

(B.Sc. Entomology 2011)

Supervisors

Prof.Dr. Mohamed Adel Hussein

Professor of Toxicology-Entomology Department-Faculty of Science-Ain Shams University

Prof.Dr. Hoda Mohamed Abdel Fattah

Professor of Insect Control-Entomology Department-Faculty of Science-Ain Shams University

Prof.Dr. Amany Soliman Khaled

Professor of Insect Control-Entomology Department-Faculty of Science-Ain Shams University

SUPERVISORS

Prof.Dr. Mohamed Adel Hussein

Professor of Toxicology-Entomology Department-Faculty of Science-Ain Shams University

Prof.Dr. Hoda Mohamed Abdel Fattah

Professor of Insect Control-Entomology Department-Faculty of Science-Ain Shams University

Prof.Dr. Amany Soliman Khaled

Professor of Insect Control-Entomology Department-Faculty of Science-Ain Shams University

Biography

Name: Radwa Gehad Mohamed Attia

Qualification: B.Sc. Science (Entomology), 2011

Entomology Department

Faculty of Science

Ain ShamsUniversity

Present Occupation: Demonstrator/ Entomology Department / Faculty of

Science, Ain Shams University.

Date of master registration: 11/3/2013

ACKNOWLEDGEMENTS

"I wish to express my deep thanks to ALLAH who fulfilled my hopes, offered every possible aid for any one in need to it".

I am deeply indebted to **Prof. Dr. Mohamed Adel Hussein,** Professor of Toxicology, Entomology Department, Faculty of science, Ain Shams University for suggesting the topic of this thesis, kind supervision, his faithful encouragement, valuable advice and for revising the manuscript.

I wish to express my deep gratitude to **Prof. Dr. Hoda Mohammed Abdel Fattah,** Professor of Insect Control, Faculty of Science, Ain Shams University for her serious supervision, endless help, kind encouragement and precious advice during the progress of this study.

I am particularly grateful to **Prof. Dr. Amany Soliman Khaled,** Professor of Insect Control, Faculty of Science, Ain Shams University for her continuous help and encouragement.

Deepest gratitude and thanks are dedicated to all my Professors and colleagues in Entomology Department, Faculty of Science, Ain Shams University.

Special thanks to **Prof. Dr. Adel Kamal**, Professor of Entomology and head of Entomology Department, Faculty of Science, Ain Shams University.

Finally, I am indebted forever to my Father and my Mother and to my beloved brother for their help, support and continuous encouragement.

CONTENTS	Page
I- INTRODUCTION	1
II- LITERATURE REVIEW	3
1- Effect of photosensitizer on insects	3
2- Biochemical studies	16
3- Ultrastructure	19
III- MATERIALS AND METHODS	25
1- Insect used in the present study	25
2- Rearing technique of insect culture	25
2.1. Feeding and oviposition of house fly adults	25
2.2. Eggs hatchability and larval development	26
2.3. Pupation and adult emergence	26
3- Selected photoactive dyes	26
3.1. Tested photoactive dyes	27
3.2. Preparation of photoactive dye concentrations	30
4- Biochemical studies	31
4.1. Quantitative analysis	31
4.1.1. Preparation of samples for biochemical	31
analysis	
4.1.2. Determination of total protein	31
4.1.3. Determination of total carbohydrate	33
4.1.4. Determination of total lipid	34
4.2. Qualitative analysis of protein	36
4.2.1. Non-denaturing polyacrylamide gel	36
electrophoresis	
4.2.2. Fraction protein (SDS-PAGE)	41

5. Ultrastructure studies	44
IV- RESULT	47
1. Toxicological studies	47
1.1. Susceptibility of M. domestica adults to	47
photosensitizing compounds	
1.2. photodynamic effect of rose bengal	53
1.3. photodynamic effect of eosin yellow lactone	57
1.4. photodynamic effect of methylene blue	61
2- Biochemical studies	67
2.1. Quantitative analysis	67
2.2. Qualitative analysis of total protein	68
2.2.1. Native protein	68
2.2.2. Fractionation protein	75
3- Ultrastructure studies	82
3.1. General morphology of <i>M. domistica</i>	82
alimentary canal	
3.2. Histological structure of the midgut	85
epithelium in <i>M. domistica</i> adults	
3.3. Fine structure of epithelial cells in <i>M</i> .	86
domistica adults	
3.4. Effect of rose bengal on the midgut of adult <i>M. domestica</i>	92
V- DISCUSSION	102
VI- SUMMARY	112
VII- REFERENCE	115
ARABIC SUMMARY	

List of Tables

No.	Title	Page
1	Mean percent mortality of <i>M. domestica</i> adults, LC ₅₀ and LC ₉₅ , their 95% confidence limits and slope of tested photosensitizing compounds.	48
2	The photodynamic effect of different concentrations of rose bengal on <i>M. domestica</i> adult	55
3	The photodynamic effect of different concentrations of eosin yellow lactone on <i>M. domestica</i> adult	59
4	The photodynamic effect of different concentrations of methylene blue on <i>M. domestica</i> adult	63
5	Sub-lethal time of photosensitizing compounds	66
6	Concentrations of total carbohydrates, total proteins and total lipids in house fly adults treated with LC ₅₀ of rose bengal	68
7	Molecular weights of native protein pattern for both treated and control samples of adult <i>M. domestica</i>	72
8	Rate of flow (RF) and % amount of native protein pattern for both treated and control samples of adult <i>M. domestica</i>	73
9	Optical density of native protein pattern for both treated and control samples of adult <i>M. domestica</i>	74
10	Molecular weights of SDS-protein pattern for both treated and control samples of adult <i>M. domestica</i>	79

11	Rate of flow (RF) and % amount of SDS-protein pattern for both treated and control samples of adult <i>M. domestica</i>	80
12	Optical density of SDS-protein pattern for both treated and control samples of adult <i>M. domestica</i>	81

List of figures

No.	Title	Page
1	Chemical structure of rose bengal	27
2	Chemical structure of eosin yellow lactone	28
3	Chemical structure of methylene blue	29
4	Standard curve of bovine serum albumin	33
5	Standard curve of total carbohydrate	34
6	Standard curve of total lipid	35
7	Effect of rose bengal concentrations on the percent mortality of <i>M. domestica</i> adults exposed to sun light.	49
8	Effect of eosin yellow lactone concentrations on the percent mortality of <i>M. domestica</i> adults exposed to sun light.	50
9	Effect of methylene blue concentrations on the percent mortality of <i>M. domestica</i> adults exposed to sun light.	51
10	Effect of different concentrations of photosensitizing compounds on the percent mortality of <i>M. domestica</i> adults exposed to sun light.	52
11	Effect of different concentrations of rose bengal on the percent mortality of <i>M. domestica</i> adults exposed to sun light for different time intervals.	56
12	Effect of different concentrations of eosin yellow lactone on the percent mortality of <i>M. domestica</i> adults exposed to sun light for different time intervals.	60
13	Effect of different concentration s of methylene blue on the percent mortality of <i>M. domestica</i> adults exposed to sun light for different time intervals.	64

14	Electrophoretic native protein patterns of control and treated samples of adult <i>M. domestica</i>	70
15	Densitometric analysis of native protein patterns of control and treated samples of adult <i>M. domestica</i>	71
16	SDS-electrophoretic protein patterns of control and treated samples of adult <i>M. domestica</i>	77
17	Densitometric analysis of SDS-electrophoretic protein patterns of control and treated samples of adult <i>M. domestica</i>	78
18	Entire alimentary canal of lesser house fly	82
19	Semi-thin section of midgut of untreated adult <i>M. domestica</i>	86
20	Electron micrograph of the epithelial cells of midgut from untreated adult <i>M. domestica</i>	88
21	Electron micrograph of normal nucleus of midgut of untreated adult house fly	89
22	Electron micrograph of midgut of untreated adult house fly showing microvilli	89
23	Electron micrograph of midgut of untreated house fly showing normal mitochondria	90
24	Electron micrograph of midgut of untreated adult house fly showing normal Granular endoplasmic reticulum	90
25	Electron micrograph of midgut of untreated house fly showing lysosome and mitochondria	91
26	Electron micrograph of midgut of untreated house fly showing normal peritrophic membrane	91
27	Normal color abdomen of untreated house fly	92
28	Red color abdomen of treated house fly with rose bengal	93
29	Orange color abdomen of treated house fly with eosin yellow lactone	93
30	Blue color abdomen of treated house fly with methylene blue	94
31	Semi-thin section of midgut of treated adult house fly with rose bengal	94
32 a	Electron micrograph of midgut of treated house fly with rose bengal	96
-		

32 b	A higher magnification of midgut of treated	96
	house fly with rose bengal showing vaculation of	
	cytoplasm	
32 c	A higher magnification of midgut of treated	97
	house fly with rose bengal showing malformed	
	nucleus	
33 a	Electron micrograph of midgut of treated house	97
	fly with rose bengal showing erosion of	
22.1	microvilli	00
33 b	Electron micrograph of midgut of treated house	98
	fly with rose bengal showing rudiment of microvilli	
34	Electron micrograph of midgut of treated house	98
34	fly with rose bengal showing malformation of	90
	nucleus and clumping of chromatin	
35	A higher magnification of midgut of treated	99
	house fly with rose bengal showing sever	
	degradation of mitochondria and lyses of	
	lysosomes	
36	Electron micrograph of midgut of treated house	99
	fly with rose bengal showing disintegration of	
	endoplasmic reticulum	
37	Electron micrograph of midgut of treated house	100
	fly with rose bengal showing detachment of	
	peritrophic membrane	
38	Electron micrograph of midgut of treated house	100
	fly with rose bengal showing malformed nucleus	
	and multivesicular bodies	
39	Electron micrograph of midgut of treated house	101
	fly with rose bengal showing malformed	
	peritrophic membrane	

ABSTRACT

The effectiveness of three photosensitizing dyes (rose bengal, eosin yellow lactone and methylene blue) was evaluated against adult house fly, *Musca domestica* in the laboratory. As judged by a comparison of LC₅₀ values, rose bengal is the most effective dye followed by eosin yellow lactone, then methylene blue. The biochemical effect of the most effective dye, rose bengal was also studied. Results revealed significant changes of the total proteins and total lipids of house fly adults, while no significant difference was observed between the total carbohydrate contents of treated and control samples. Ultrastructure studies showed a drastic effect of rose bengal on most organelles of midgut epithelial cells.

Key words: Photosensitizing dyes, house fly, bioassay, biochemistry, ultrastructure

I. INTRODUCTION

The house fly (Musca domestica) is an important vector for the transmission of several enteric diseases such as dysenteries, infantile diarrhea, food poisoning, cholera and parasitic worm. So, houseflies constitute one of the main human public health problems (Gamal Eddin, The efficient control of house fly has long been the goal of 1977). workers in the field of medical entomology. Chemical treatments create problems by leaving undesirable residues in food. Due to the random use of insecticides and to rapid generation time, flies have developed some level of resistance to most available insecticides, with some insecticides being essentially useless (Kaufman and Rutz, 2002). Thus, it is becoming clear that alternative pest management tools are needed, which will be less hazardous to human, non target organisms and the environment, in the same time these alternative tools must be used in the field application with minimum cost. In this context, sunlight-activated photo-pesticides represent a possible alternative to traditional chemical compounds. The use of photochemical processes as a tool to control the population of several types of insects has been repeatedly examined in both laboratory experiments and field studies on fire ants, Solenopsis spp. (David and Heitz, 1978); corn rootworm, *Diabrotica* spp. (Schroder et al., 1998), and Mexican fruit fly, Anastrepha ludens (Moreno and Mangan, 1995). Moreover, phloxin B, a polyhalogenated fluorescein, has been developed for commercial use as a pesticide (Amor and Jori, 2000).

The mechanism for photodynamic activity has been described by Heitz (1995). Toxicity occurs at the cellular level with the dye acting as a catalyst for the generation of singlet oxygen molecules. The photoactive compound accumulates within the insect and, following exposure to visible light, induces damage of its cuticle, Malpighian tubules, midgut

wall, followed by feeding inhibition and eventual death (Amor *et al.*, 1998). At the cellular level, most photosensitizers are able to induce apoptotic cell death (Luksiene, 2003 and Eggen *et al.*, 2005).

Plan of work:

1- Bioassay test:

- Determination of the lethal, sub-lethal concentration and lethal time of some photosensitizing compounds on the adult stage.

2- Biochemical studies:

 Quantitative analysis of protein, lipid and carbohydrates and qualitative analysis of protein in adults after treatment with the sub-lethal concentration of the most effective photosensitizing compound.

3- Histopathological and ultra-structural studies:

- Describe the histological and ultra-structural changes in the midgut of adult house fly treated with the sub-lethal concentration of the most effective compound to detect which cellular targets are affected.

II. LITERATURE REVIEW

1- Effect of photosensitizer on insects

Barbosa and Peter (1970) tested a series of five concentrations of vital dyes as methylene blue and neutral red for *Aedes aegypti* larvae control. The results showed increasing in mortality and larval period and decreasing in pupation rate. Developmental period of *A. aegypti* larvae treated with neutral red was greater than methylene blue. There was no significant change in male pupal weight treated with methylene blue, although showing a significant difference in case of neutral red. There was a significant difference in female pupal weight treated with both methylene blue and neutral red.

Yoho et al. (1971) tested seven photoactive dyes on house fly, *Musca domestica* and subsequently exposed to natural and artificial light. Mortality was greatest in flies treated with rose bengal, rhodamine, erythrosin B and eosin blue while little or no mortality occurred in flies treated with uranine, phenosafranin, and methylene blue chloride. Results showed a similarity of results between natural and artificial light. Difference in mortality was observed between dye treated insects exposed to light and those remained in darkness, where 0.0625% rhodamine caused 100% mortality after three hours light and 0% mortality after three hours darkness.

Yoho et al. (1973) determined the effectiveness of six fluorescent dyes on house fly, Musca domestica. They found that rose bengal, erythrosin B, and rhodamine caused the highest mortality then eosin yellow and methylene blue chloride was the lowest. Flies fed a dye