## Evaluation of Bone Mineral Density and Body Composition in 7-8 years Old Egyptian Males

#### Chesis

Submitted for partial fulfillment of Master Degree In Pediatrics

## By

#### Laila Hamed Farouk El Maghraby

M. B. B. CH. Mansoura University (2006)

## Supervision of

## Prof. Dr. Mohamed Salah El Din ElKholy

Professor of Pediatrics Faculty of Medicine Ain Shams University

### Prof. Dr. Heba Hassan Elsedfy

Professor of Pediatrics Faculty of Medicine Ain Shams University

#### ①r. Rasha Tarif Hamza

Assistant Professor of Pediatrics Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2013



سورة البقرة الآية: ٣٢

## **ACKNOWLEDGMENT**



First of all, thanks to ALLAH whose magnificent help was the main factor in completing this work.

It is a great honour to me to express my deepest gratitude and appreciation to Prof. Dr. Mohamed Salah El Din EL Kholy; Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for his valuable help, precious advice, continuous encouragement and constructive guidance that were the most driving forces in the initiation and progress of this work.

I wish to express my unlimited gratitude to **Prof. Dr. Heba Hassan El Sedfy;** Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her supervision, helpful discussions and suggestions. In fact, few words never suffice to do justice in thanking her for her extraordinary contribution of time, effort and valuable experience.

I can't fully express my deepest thanks to **Dr. Rasha Tarif Hamza**; Assistant Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her patience, assistance and very helpful advice and guidance during the progress of this work.

My special thanks to all my patients and their parents who agreed to share in this study. I'm thankful to them for their effort, time and cooperation.

LAILA



## List of Tables

| Table No.   | Title                                                                            | Page |
|-------------|----------------------------------------------------------------------------------|------|
| Table(1):   | Classification of childhood osteoporosis                                         | 26   |
| Table(2):   | Multiple biological functions of calcium                                         | 42   |
| Table(3):   | Distribution of calcium in the body                                              | 43   |
| Table(4):   | Blood calcium-10mg/100 ml (2.5 mmols/L)                                          | 43   |
| Table (5):  | Recommended Dietary Allowances (RDAs) for Calcium                                | 45   |
| Table(6):   | Tolerable Upper Intake Levels (ULs) for Calcium                                  | 45   |
| Table(7):   | Calcium absorption (0.4-1.5 g/d)                                                 | 46   |
| Table(8):   | Mechanisms of gastrointestinal calcium absorption                                | 46   |
| Table(9):   | Regulation of urinary calcium                                                    | 47   |
| Table(10):  | Serum phosphorus reference ranges during childhood                               | 48   |
| Table(11):  | Phosphorus metabolism                                                            | 49   |
| Table(12):  | Urinary phosphate                                                                | 50   |
| Table(13):  | Forms of vitamin D                                                               | 53   |
| Table(14):  | Common terms seen in a DEXA report                                               | 66   |
| Table (15): | Common pitfalls in DEXA interpretation                                           | 72   |
| Table (16): | Distribution of age, dietary calcium intake, sun exposure, and physical activity | 84   |
| Table (17): | Socioeconomic factors and score of studied subjects                              | 84   |
| Table (18): | Anthropometric measurements of studied subjects                                  | 85   |

| Table No.   | Title                                                               | Page |
|-------------|---------------------------------------------------------------------|------|
| Table (19): | Laboratory bone parameters of studied subjects                      | 85   |
| Table (20): | DEXA bone parameters of studied subjects                            | 86   |
| Table(21):  | Correlations between DEXA parameters and age                        | 87   |
| Table (22): | Correlations between DEXA parameters and dietary calcium intake     | 88   |
| Table (23): | Correlation between DEXA parameters and sun exposure                | 89   |
| Table (24): | Correlation between DEXA parameters and socioeconomic factors       | 91   |
| Table (25): | Correlation between DEXA parameters & El-Bohy score                 | 92   |
| Table (26): | Correlations between DEXA parameters and weight for height SDS      | 93   |
| Table (27): | Correlation between DEXA parameters and height SDS                  | 94   |
| Table (28): | Correlation between DEXA parameters and each of BMI and its SDS     | 95   |
| Table (29): | Correlations between laboratory bone parameters and DEXA parameters | 96   |
| Table (30): | Correlations between DEXA parameters and physical activity          | 97   |

## List of Figures

| Fig. No.  | Title                                                                                                                      | Page |
|-----------|----------------------------------------------------------------------------------------------------------------------------|------|
| Fig.(1):  | Structure of typical long bone                                                                                             | 5    |
| Fig.(2):  | Compact bone & spongy (Cancellous) Bone                                                                                    | 6    |
| Fig.(3):  | Endochondrial ossification                                                                                                 | 7    |
| Fig.(4):  | Formation (+) and resorption (-) activates during bone growth from A to B                                                  | 9    |
| Fig.(5):  | Regulation of osteoclastogenesis                                                                                           | 10   |
| Fig.(6):  | Osteoblasts synthesize proteinaceous matrix,                                                                               | 12   |
| Fig.(7):  | Electronic micrography                                                                                                     | 16   |
| Fig.(8):  | Collagen fibers of woven bone                                                                                              | 17   |
| Fig.(9):  | Osteoclast, with bone below it, showing typical distinguishing characteristics.                                            | 18   |
| Fig.(10): | Osteoblasts, several displaying a prominent<br>Golgi apparatus, actively synthesizing<br>osteoid containing two Osteocytes |      |
| Fig.(11): | Multiple osteoporotic wedge fractures demonstrated on a lateral thoraco-lumbar spine X-ray                                 | 32   |
| Fig.(12): | Calcium regulation in the human body. The role of vitamin D is shown in orange                                             | 54   |
| Fig.(13): | Diagram of the Human PTH-PTHrP Receptor                                                                                    | 57   |
| Fig.(14): | The parathyroid axis                                                                                                       | 58   |
| Fig (15): | Correct positioning and analysis of the L1–L4 spine and the proximal femur.                                                | 64   |
| Fig (16): | DEXA images showing regions of interest.                                                                                   | 65   |

## Tist of Abbreviations

| aBMD   | Areal bone mineral density                         |
|--------|----------------------------------------------------|
| ALP    | Alkaline phosphatase                               |
| ATP    | Adenosine triphosphate                             |
| BA     | Bone age                                           |
| ВМС    | Bone mineral content                               |
| BMD    | Bone mineral density                               |
| Bmus   | Bone multicellular units                           |
| CSF    | Colony stimulating factor                          |
| Calci  | Calcitonin related polypeptide alpha               |
| cAMP   | Cyclic adenosine monophosphate                     |
| DABAS  | Dual action bone agent                             |
| DEXA   | Dual energy X-ray absorptiometry                   |
| DRIS   | Dietary reference intake                           |
| FFM    | Fat free mass                                      |
| FNB    | Food &nutrition board                              |
| IGF    | Insulin growth factor                              |
| IL     | Interlukin                                         |
| IOM    | Institude of medicine                              |
| LBM    | Lean body mass                                     |
| LDL    | Low density lipoprotein                            |
| LRP5   | Low-density lipoprotein receptor related protein 5 |
| M-CSF  | Macrophage colony stimulating factor               |
| MEPE   | Matrix extracellular phosphoglycoprotein           |
| MK     | Menatetrenone                                      |
| NHANES | National health &nutrition examination survey      |
| OP     | Osteoprosis.                                       |
| OPG    | Osteoprotegrin                                     |

| Pdc              | Position development conference                     |
|------------------|-----------------------------------------------------|
| PDGF             | Platlet derived growth factor                       |
| PGE <sub>2</sub> | Prostaglandin E <sub>2</sub>                        |
| Pi               | Inorganic phosphate                                 |
| PKC              | Protein kinase C                                    |
| PKC              | Protein kinase C                                    |
| PMCA1            | Plasma membrane calcium ATPase                      |
| Ppar             | Peroxisome proliferator activated receptor gamma    |
| PQCT             | Peripheral quantitative computed tomography         |
| PTH              | Parathyroid hormone                                 |
| RANK             | Receptor activation of nuclear factor kappa         |
| RANKL            | Receptor activator of nuclear factor κappa B Ligand |
| RDA              | Recommended dietary allowance                       |
| RDI              | Recommended daily intake                            |
| RGD              | Arginin, glycin and asparagines                     |
| rhPTH            | Recombinant human parathyroid hormone               |
| ROIs             | Regions of interest                                 |
| SD               | Standard deviation                                  |
| SDS              | Standard deviation score                            |
| SES              | Socioeconomic scoring                               |
| SIBLING          | Small integrin Binding Ligand N – glycosylated      |
| proteins         | proteins                                            |
| TGF β            | Transforming growth factor beta                     |
| TNF              | Tumer necrosis factor                               |
| TRPV6            | Transient receptor potential vanilloid6             |
| vBMD             | Volumetric bone mineral density                     |
| vBMD             | lumetric bone mineral density                       |
| VDR              | Vitamin D receptecepor                              |

## Contents

|                          | Items                                     | Page |
|--------------------------|-------------------------------------------|------|
| List of Abbreviations    |                                           |      |
| List of Table            | S                                         |      |
| List of Figure           | es                                        |      |
| Introduction             |                                           | 1    |
| Aim of the V             | Vork                                      | 3    |
| Review of Li             | teratures                                 | 4    |
| Chapter (1)              | : Normal Bone Anatomy and Physiology      | 4    |
| Chapter (2)              | : Osteoporosis (OP)                       | 20   |
| Chapter (3)              | : Calcium and Phosphorus                  | 42   |
| Chapter (4)              | : Dual Energy X-Ray Absorptiometry (DEXA) | 60   |
| Subjects and Methods     |                                           |      |
| ♦ Results                |                                           |      |
| ♦ Discussi               | ion                                       |      |
| ♦ Summary and Conclusion |                                           |      |
| ♦ Recommendation         |                                           |      |
| ♦ References             |                                           |      |
| ♦ Arabic Summary         |                                           | Í    |



## Introduction



#### Introduction

Bone densitometry is a widely used and universally accepted tool for the assessment of bone mass in adults. In the last two decades, however, interest in bone densitometry in children has increased. This can be explained first by the introduction of more effective treatment regimens aimed at increasing and maintaining bone density in a variety of diseases influencing bone development and or growth and secondly, by the fact that several reports have indicated the importance of peak bone mass in relation to future development of osteoporosis (*Van Rijn et al.*, 2006).

There are 2 main reasons for measuring bone mineral content (BMC) in children: to quantify the deficits in bone mineral associated with the various disorders that cause osteopenia in children and to improve our understanding of the childhood antecedents of osteoporosis, a condition that happens to manifest itself in elderly subjects. Available data suggest that the genetic susceptibility to osteoporosis may be detectable in early childhood (*Gilsanz and Wren*, 2007).

Measurement of bone mineral density (BMD) by dual – energy x-ray absorptiometry (DEXA) is viewed widely as the preferred method for clinical use in children because of its speed, precision, safety, and wide spread availability. The radiation exposure is comparable to that received during a round trip transcontinental airplane flight (*Bachrach*, 2005).

DEXA is an attractive option for clinical use that gives estimates of bone mineral mass, fat free mass (FFM), which is approximately equivalent to lean body mass (LBM), and total fat mass (TFM). DEXA exploits the fact that the energy dependency of the strength of interaction between X-rays and bone mineral differs from that for soft tissue. At low energies, bone dominates the attenuation process while, at higher energies, X-rays interact to about the same extent with bone and soft tissue (*Sala et al.*, 2006).

The 3 main limitations of DEXA measurement in children are: (1) the current lack of a standardized pediatric normative database, (2) the lack of a meaningful clinical outcome measure related to DEXA values in children, and (3) inaccuracies resulting from growth -related variations in bone and body size and composition (*Gilsanz and Wren*, 2007).



# Aim of the Work



### Aim of the Work

The aim of this work is to set a standardized pediatric normative database for BMD and body composition in a representative sample of healthy Egyptian male children aged 7-8 years by DEXA scanning.



# Review of Literature

