

جــامعـة الأزهر كـلية العلــوم (بنين) قســم الكيمياء الدراسات العليا والبحوث

:

التحضير فضة نانومتري بطرق كيميائية مختلف ال

:

يهدف هذا البحث الى تحضير فضة انومترية بثلاث طرق كيميائية مختلفة وهذه الطرق تتمثل فى طريقة الترسيب الكيميائى والطريقة الهيدروحرارية وطريقة استخدام أشعة الميكرويف. كما أنه تمت دراسة بعض العوامل المؤثره على هذه الطرق وتم أيضا توصيف ي

التوقيع: الوظيفة: الكيمياء غير العضويه كلية العلوم - جامعة الاز هر. الوظيفة: رئيس شعبة تكنولوجيا الخامات والميتالورجيا بمركز بحوث وتطوير الفلزات. التوقيع: (2) . / السيد على عبدالعال التوقيع: **لوظيفة** : استاذ الكيمياء الفيزيائيه - كلية العلوم – جامعة الاز هر . . / رئيس القسم التوقيع / . (1) الوظيفة: استاذ الكيمياء غير العضويه كلية العلوم - جامعة الاز هر الوظيفة رئيس شعبة تكنولوجيا الخامات والميتالورجيا بمركز بحوث وتطوير الفلزات. التوقيع (2) . /السيد على عبدالعال التوقيع الوظيفة استاذ الكيمياء غير العضويه كلية العلوم ـ جامعة الاز هر (3) . /ربيع سعد فرج (4) . / مصطفى ابر اهيم مصطفى الوظيفة. تاذ الكيمياء - كلية العوم - جامعه بنها التوقيع مدير ادارة الكلية

Preparation of Silver Nanoparticles by Different Chemical Methods

A THESIS

Submitted For the Fulfillment of Master Science Degree in Physical Chemistry

 $\mathcal{B}y$

Bassam Khalaf Damrany Ahmed

B.Sc. of Chemistry (2006)

Faculty of science Al-Azhar University (Assiut branch)

To

Chemistry Department Faculty of science AL-Azhar University (Cairo)

Under the supervision of

Prof. Dr. Ali Mustafa Ali Hassan

Prof. of inorganic chemistry, Faculty of Science, Al-Azhar University Prof.Dr. El-Sved Ali Abdel-Aal

Head of Minerals Processing and Technology department, Central Metallurgical R&D Institute

Prof. Dr. Mostafa Farag Bakr

Prof. of physical chemistry, Faculty of Science, Al-Azhar University

AL-Azhar University, Faculty of science, Chemistry Department, Cairo/2013

"تحضير فضة نانومتري بطرق كيميائية مختلف "

مقدمه من بسام خلف دمر انى أحمد بكالوريوس علوم قسم كيمياء (2006) كلية العلوم _ جامعة الأزهر (فرع أسيوط)

قسم الكيمياء كلية العلوم ـ جامعة الأزهر للحصول على درجة الماجستير في العلوم (الكيمياء الفيزيائية)

. . السيد على عبدالعال رئيس شعبة تكنولوجيا بمركز بحوث وتطوير الفلزات

أستاذ الكيمياء غير العضويه كلية العلوم _ جامعة الأزهر

قسم الكيمياء كلية العلوم _ جامعة الأزهر 2013

بسم الله الرحمن الرحيم

" صدق الله العظيم

(سورة طه : حـ 114)

Dedication

To My Parents

To My Wife

To My Son

To My Uncles

To My Brothers

To My All Family

Ch. Bassam KHalaf Damrany

ACKNOWLEDGEMENT

"I do thank ALLAH for all gifts He gave me"

I would, however, like to take this opportunity to acknowledge gratefully my personal debt to Prof. Dr. Ali Mustafa Ali Hassan, professor of inorganic chemistry, faculty of science, Al-Azhar University, and to Prof. Dr. El-Syed Ali Abdel-Aal, Head of Minerals processing and Technology Department, Central Metallurgical Research & Development Institute for suggesting, supervising the problem, helpful guiding and concrete discussion of this work. Their deep insight, inertest, fatherly patience and wisdom on both the professional and personal levels as a constant source of inspiration.

My deepest thanks and appreciation are also due to Prof. Dr. Mostafa Farag Bakr professor of physical chemistry, faculty of science, Al-Azhar University for his guidance, valuable advice and continuous supervision.

I wish to express thanks to Dr. Youssif H.A. Ebead, May Allah mercy him, Associate professor of physical and inorganic chemistry, faculty of science at Qena, South Valley University.

This experimental work was carried out in Central Metallurgical Research & Development Institute (CMRDI), El –Tabeen, Cairo, Egypt; thanks are due to all staff and administration in the institute.

It is also my pleasure to thank my family for their tolerance, support and encouragement.

Finally, Thanks are also extended to all the staff and colleagues in the chemistry department, faculty of science, Al-Azhar University.

Aim of work

Silver nanoparticles can be produced by various methods including the chemical reduction of silver ions with or without stabilizing agents, hydrothermal methods in organic solvents, and microwave irradiation in reverse micelles. Using these methods, silver nanoparticles with spherical, octahedral, tetrahedral, hexagonal, cubic, wire, coaxial cable, triangular prism, disc, triangular, and shell shapes have been manufactured. All these advances have promoted the scientific knowledge on the nature of nanomaterials. Consequently, the aim of this thesis is to prepare silver nanoparticles using three different techniques (chemical reduction, hydrothermal and microwave irradiation). The experimental conditions such as initial concentrations of silver nitrate, pH of medium, reaction temperature, reaction time, addition of the surfactant and reducing agent are thoroughly studied. Another important objective goal of this study is to control the size, morphology, shape, and stability, color, and physiochemical properties of the produced silver nanoparticles by controlling the synthesis conditions.

List of Abbreviations

Silver Nanoparticles **SNPs** X- Ray Diffraction **XRD** Transmission Electron Microscopy **TEM SEM** Scanning Electron Microscopy Cetyltrimethyl Ammonium Bromide **CTAB** Cetyltrimethyl Ammonium Chloride **CTAC** Dodecyltrimethyl Ammonium Bromide **DTAB** Linear PolyethylenImine **LPEI** Sodium Dodecyl Sulphate **SDS** Hexadecyl Pyridinium Chloride **HPC** Polyethylenglycol **PEG Isoelectric Point IEP** Surface Plasmon Resonance SPR

Contents

	➤ Aim of Work	I
	➤ List of Abbreviation	II
	Lists of Tables	IX
	> List of Figures	XI
	I. INTRODUCTION	2
	Subjects	Page
<i>I.1</i>	General Synthesis and Properties of Nanoparticles in Solution	2
I.1.1	Nucleation and Nanomaterial growth	2
I.1.2	Micro-emulsion process	4
I.1.3	Sol-gel process	5
I.1.4	Nanoparticles in Aqueous Solution	5
<i>I.2</i>	The General Properties of Nanoparticles	8
<i>I.3</i>	Synthesis and Characterization of Silver Nanoparticles by Chemical Reduction Methods	9
<i>I.4</i>	Synthesis and Characterization of Silver Nanoparticles by Hydrothermal Reaction Methods	21
<i>I.5</i>	Synthesis and Characterization of Silver Nanoparticles by Microwave Methods	33

<i>I.6</i>	Synthesis of Silver Nanoparticles by Different Methods	41
	II.EXPERIMENTAL	
II.1	Materials and Synthesis procedure	55 55
II.1.1	Materials and chemicals	55
II.1.1.1	Silver nitrate solution (AgNO ₃)	55
II.1.1.2	Ammonia solution (NH ₄ OH)	55
II.1.1.3	Formaldehyde solution (HCHO)	56
II.1.1.4	pH adjusting solution	56
II.1.1.5	Deionized water	56
II.1.1.6	Surfactant additives	56
II.1.1.6.1	Anionic surfactant (SDS)	56
II.1.1.6.2	Cationic surfactant (HPC)	57
II.1.1.6.3	Non-ionic surfactant (Triton)	57
II.1.1.7	Ethelenglycol (EG)	58
II.1.1.8	Polyethelenglycol (PEG)	58
II.1.2	Synthesis and procedure	58
II.1.2.1	Synthesis of Silver Nanoparticles by Chemical Reduction Method	58

II.1.2.2	Synthesis of Silver Nanoparticles by Hydrothermal Method	61
II.1.2.3	Synthesis of Silver Nanoparticles by Microwave Method	62
II.2	Samples Characterization	63
II.2.1	Crystal Structure and Phase Analysis	63
II.2.2	Morphology	64
II.2.3	Ultraviolet and Visible Spectra (UV-Vis)	65
II.2.3	Chemical Analysis	65
	Chapter (3)	
	III. RESULTS AND DISCUSSION	66
III.1	The Chemical Reduction Method	66
III.1.1	The Effect of Silver Initial Concentrations	66
III.1.1.1	The Effect of Silver Initial Concentrations on the Crystallite Size of Silver Nanoparticles	67
III.1.1.2	The Effect of Silver Initial Concentrations on the Recovery of Silver Nanoparticles	68
III.1.1.3	The Crystallite Size of Silver Nanoparticles	68
III.1.1.4	The Characterization Structure of Silver Nanoparticles	70
III.1.1.5	The Effect of Silver Initial Concentrations on the Morphology of Silver Nanoparticles	71
III.1.2	The Effect of the Temperature	75

III.1.2.1	The Effect of Temperature on the Crystallite Size of Silver Nanoparticles	76
III.1.2.2	The Effect of Temperature on the Recovery of Silver Nanopowders	77
III.1.2.3	The Crystallite Size of Silver Nanoparticles	78
III.1.2.4	The Characterization Structure of the Silver Nanoparticles	79
III.1.2.5	The Effect of the Temperature on the Morphology of Silver Nanoparticles	80
III.1.2.6	Relationship between the Temperature and the Crystallite Size of Silver Nanoparticles	84
III.1.2.7	Relationship between the Temperature and the Recovery of Silver Nanoparticles	85
III.1.2.8	The Crystallite Size of Silver Nanoparticles	86
III.1.2.9	The Characterization of the Structure Silver Nanoparticles	87
III.1.3	The Effect of the Time	89
III.1.3.1	The Effect of Time on the Recovery	90
III.1.4	The Effect of pH Medium	91
III.1.4.1	Effect of the pH Medium on the Recovery of Silver Nanoparticles	92
III.1.4.2	The Effect pH of Medium on the Morphology of Silver Nanoparticles	93

III.1.5	The Effect of the Addition of Surfactants	96
III.1.5.1	The Effect of the Addition of Anionic Surfactants (SDS)	96
III.1.5.2	The Effect of the Addition Cationic Surfactant (Hexadecy	99
	Pyridinium Chloride)	
III.1.5.3	The Effect of Addition of Nonionic Surfactant (Triton).	100
III.1.5.4	A Comparison of the Three Types of Surfactants.	103
III.2	The Hydrothermal Reaction Methods.	104
III.2.1	The Effect of Silver Initial Concentration.	105
III.2.1.1	The Effect of Silver Initial Concentration on the Recovery of	106
	Silver Nanoparticles	
III.2.1.2	The Effect of Silver Initial Concentrations on the Morphology	108
	of Silver Nanoparticles	
III.2.2	The Effect of the Hydrothermal Temperature	112
III.2.2.1	The Effect of the Hydrothermal Temperature on the Recovery of Silver Nanoparticles	113
III.2.2.2	The Effect of the Hydrothermal Temperature on the	114
	Morphology of Silver Nanoparticles	
<i>III.2.3</i>	The Effect of the Hydrothermal Reaction Time	116
III.2.3.1	The Effect of the Hydrothermal Reaction Time on the Recovery	117
	of Silver Nanoparticles	
III.2.3.2	The Effect of the Hydrothermal Reaction Time on the	118
	Morphology of Silver Nanoparticles.	
<i>III.2.4</i>	The Effect of pH Medium.	120

III.2.4.1	The Effect of pH Medium on the Recovery of Silver	121
	Nanoparticles.	
III.2.4.2	The Effect of pH Medium on the Morphology of Silver	122
	Nanoparticles.	
III.3	The Microwave Reaction Method.	124
III.3.1	The Effect of the Silver Initial Concentrations.	125
III.3.2	The Effect of the Reaction Time.	135
III.3.3	The Effect of the Microwave Powers.	139
III.3.3.1	The Effect of Microwave Powers on the Recovery of Silver	141
	Nanoparticles.	
	IV. Conclusion	142
	V. References	144