Effect of Rigid Versus Resilient Retainers on the Abutment Anterior to a Posterior Modification Space of Kennedy Class II: Stress Analysis Study

Thesis submitted to Faculty of Dentistry Ain-Shams University in partial fulfillment of the requirements of Master Degree in Prosthodontics

 $\mathbf{B}\mathbf{y}$

Sally Abdul Hamed Abdul-Meged Al-Shafiey

B.D.S. Ain Shams University 2000

Faculty of Dentistry Ain Shams University 2007

تأثير المثبتات الصلبة بالمقارنة مع المثبتات اللينة على السنة الأمامية الداعمة للتعديل الخلفي لحالات مجموعة كنيدي II: دراسة تحليل الإجهاد

رسالة مقدمة لكلية طب الأسنان جامعة عين شمس للحصول على درجة الماجستير في الاستعاضة الصناعية

مقدمة من الطبيبة / سالى عبد الحميد عبد المجيد الشافعى بكالوريوس طب القم والأسنان . جامعة عبن شمس ٢٠٠٠

كلية طب الأسنان جامعة عين شمس ٢٠٠٧

المشرفون أ.د / فاطمة الزهراء عوض

أستاذ الاستعاضة الصناعية كلية طب الأسنان. جامعة عين شمس

د / مجدي عيد محمد

مدرس الاستعاضة الصناعية كلية طب الأسنان . جامعة عين شمس

Supervisors

Prof. Dr. Fatma Elzahraa Awad

Professor of Prosthodontics Faculty of Dentistry, Ain Shams University

Dr. Magdy Eid Mohamed

Lecturer of Prosthodontics
Faculty of Dentistry, Ain Shams University

-Acknowledgement

am thankful to God for all his kindness and grace for giving me the perseverance to accomplish this work.

would like to express my deepest appreciation and gratitude to **Dr. Fatma Elzahraa Awad**, Professor of Prosthodontics, Faculty of Dentistry, Ain-Shams University,

who very kindly and generously gave much of her effort, time and precious experience. Words stand short when expressing my gratefulness for her unlimited help, valuable guidance and instructions from the very beginning and throughout the whole work.

am specially grateful and thankful to **Dr. Magdy Eid Mohamed,** Lecturer of Prosthodontics, Faculty
of Dentistry, Ain - Shams University, for the kind

supervision and valuable leadership, which influenced every though presented. He has always been there when I needed support guidance and understanding. I will remain thankful for his for the selection of the point of research.

wish to express my deepest gratitude to my husband Dr. Ahmed Al-Wady, Assistant Lecturer of Oral Medicine, Faculty of Dental Medicine Al-Azhar University, for his love and generous support during the difficult times of my research.

and generous support during the difficult times of my research. It was his valuable help that made the study possible.

Gannot forget the enormous help of my dear family, who provided me support, encouragement and care. My special thanks are also due to my dear beloved sister Randa.

Sally Abdul Samed

To My Dear Father

Beloved Mother

My Dear Husband

And

My Little Youssef

List of Abbreviations

RPD: Removable partial denture.

DEBs : Distal extension bases.

VRHR : Vertical reciprocation horizontal retention.

Ti-Ni : Titanium-Nickel.

Co-Cr : Cobalt-chromium.

DF : Degrees of freedom

PDL : Periodontal ligament.

SD : Standard deviation.

Contents

Introduction	
Review of Literature	
■ Forces acting on DEBs	
■ Kennedy class II	
Direct retainers	
 Stresses induced by clasp designs used in DEBs 	
• Stress analysis	
Aim of the Study	
Materials and Methods	
Results	
Discussion	
Summary	
Conclusions	
References	
Arabic Summary	

List of Figures

No.		Page
1	Ready made maxillary model	53
2	Cast modified to a Kennedy class II modification 1	53
3	Teeth repositioned in their mould in the impression with their roots wrapped with tin foil	54
4	Top view of the modified cast	55
5	Remnants of tin foil	55
6	Rubber base and Rubber base adhesive material.	56
7	Teeth repositioned in their sockets in the model after replacing foil by rubber base	57
8	The cast on the dental surveyor	58
9	Wax pattern including Aker clasp on DEB abutment	58
10	Wax pattern for including distal rest on abutment anterior to the modification space	59
11	Wax pattern including RPI clasp on DEB abutment	59
12	The three framework designs after being finished and polished	60
13	Close up of the strain gauge used	61
14	Labelled strain gauges attached to the planned positions	62

No.		Page
15	Load applicator attached to upper member of Universal testing machine	63
16	Four channel strain meter	64
17	Barchart showing the difference between means of microstrain values on the palatal surface of abutment	67
18	Barchart showing the difference between mean of microstrain values on the mesial surface of abutment	69
19	Barchart showing the difference between mean of microstrain values on the buccal surface of abutment	71
20	Barchart showing the difference between mean of microstrain values on the distal surface of abutment	73
21	Barchart showing the difference between total mean of microstrain values on the abutment anterior to modification space of Kennedy class II	75
22	Barchart showing the difference between mean of microstrain values on the mesial surface of DEB abutment	77
23	Barchart showing the difference between mean of microstrain values on the distal surface of the DEB abutment	79
24	Barchart showing the difference between total mean of microstrain values on the DEB abutment with different clasps on the anterior abutment of modification space	80

List of Tables

No.		Page
1	Means and standard deviation for microstrains induced to palatal surface of abutments bearing Aker clasp, I bar clasp and occlusal rest	66
2	Paired t-test comparing the means of microstrains induced by different clasps on palatal surface of abutments	66
3	Means and standard deviation for microstrains induced to mesial surface of abutments bearing Aker clasp, I bar clasp and occlusal rest	68
4	Paired t-test comparing the means of microstrains induced by different clasps on mesial surface of abutment	68
5	Means and standard deviation for microstrains induced to the buccal surface of abutment bearing Aker clasp, I bar clasp and occlusal rest.	70
6	Paired t-test comparing the means of microstrains induced by different clasps on buccal surface of abutment	70
7	Means and standard deviation for microstrains induced to distal surface of abutment bearing Aker clasp, I bar clasp and occlusal rest	72

No.		Page
8	Paired t-test comparing the means of microstrains induced by different clasps on distal surface of abutment	72
9	Means and standard deviation for total microstrains induced to abutment anterior to modification space of Kennedy class II	74
10	Paired t-test comparing total means of microstrains induced by different clasps on abutment anterior to modification space of Kennedy class II.	74
11	Means and standard deviation for microstrains induced to mesial surface of DEB abutment with different clasps on the anterior abutment of modification space	76
12	Paired t-test comparing between microstrain values at mesial surface	76
13	Means and standard deviation for microstrains induced to distal surface of the DEB abutment with different clasps on the anterior abutment of modification space	78
14	Paired t-test comparing between microstrain values at distal surface	78
15	Total means and standard deviation for microstrains induced to the DEB abutment with different clasps on the anterior abutment of modification space	79
16	Paired t-test comparing between total microstrain values at DEB abutment	80

Introduction

Clasp retained removable partial dentures continue to be one of the most common treatment modalities for the greatest number of partially edentulous patients. However, improper biomechanical designing and construction of removable partial dentures (RPDs) may result in deletreous changes in the remaining oral structures.⁽¹⁾

Since Preservation of the remaining tissues is considered the main objective of removable prosthodontic treatment, it thus seems necessary to rehabilitate edentulous patients with RPDs constructed on biomechanical bases and principles. For this reasons research and studies are continuously attempted to provide sound bases for RPD construction. This is actually more difficult with distal extension compared to bounded RPDS. (1,2,3)

Distal extension bases (DEBs) exhibit composite type of support gained from both the teeth and residual ridges. This leads to movement of the denture base under functional loading and transmission of stresses to the abutment teeth through clasps and other components. The result is thus resorption of the residual ridge and torque on abutment teeth. (4,5)

Several methods have been proposed to limit base movement and to distribute functional stresses between the