Protective Effects of Certain Natural Product(s) on Experimentally-induced Benign Prostatic Hyperplasia

Thesis presented by

Sherif Mohamed Ali Mohamed Shoieb

B.Sc. in pharmaceutical sciences, Ain Shams University (2011)
Demonstrator of Pharmacology and Toxicology,
Faculty of Pharmacy, Ain Shams University.

Submitted for partial fulfillment of Master Degree in Pharmaceutical Sciences (Pharmacology and Toxicology)

Under the supervision of

Professor Amani Emam Mohamed Khalifa

Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Seconded as strategic planning consultant for 57357 children cancer hospital.

Dr. Ahmed Esmat Abdelrazek

Lecturer in Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University.

Faculty of Pharmacy Ain Shams University (2014) Most heartfelt thanks are due to **Dr. Amany Emam Khalifa**, Professor of Pharmacology and Toxicology, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University and seconded as strategic planning consultant for 57357 children cancer hospital, who has made this work possible by her great effort, continuous guidance, support and indispensable help throughout the thesis work. In fact, she was more than a supervisor, she never stopped supporting and encouraging me. Her precious advices were always pushing me forward.

I wish to express my appreciation and gratitude to **Dr. Ashraf Bahi El-Deen Abdel Naim,** Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, for his continuous guidance, kind cooperation and discussion throughout the work.

I am greatly thankful to **Dr. Ahmed Esmat**, Lecturer of Pharmacology and Toxicology, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University. I am deeply grateful for his continuous support, guidance as well as tremendous effort and indispensable help in the practical work and thesis writing.

I would like to thank **Dr. Eman Mantawy**, lecturer of Pharmacology and Toxicology, Ain Shams University, MSc Pharmacist **Reem Tarek** Assistant lecturer of Pharmacology and Toxicology, Ain Shams University and MSc Pharmacist **Reham Soliman** Assistant lecturer, National center for radiation research and technology for their continuous help in the practical work and thesis writing.

It is my great pleasure to thank all members of Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University and every person in my Faculty who supported me and helped me in finishing my master work.

A special thanks to **my dear friends**. Words cannot express how grateful I am to them. Your prayer for me was what sustained me thus far and you incented me to strive towards my goal.

In memory of **my aunt, Mrs. Shadia Kamal El Degwy.** You left fingerprints of grace on our lives. This thesis is dedicated for your soul.

Finally, but of great importance, I owe my deepest gratitude to my father, Bragadier-general Eng. Mohamed Ali Shoieb, my mother, Mrs. Ekram Kamal El Degwy and my sisters, Dentist Rasha & Pharmacist Dalia for their support and continuous prayers and for all what they endured to tolerate and uphold me in accomplishing this thesis.

Sherif Mohamed Shoieb

List of Contents

Subject	Page NO.
Abstract	i
List of abbreviations	iii
List of figures	vi
List of tables	ix
Introduction	
I. Benign prostate hypertrophy (BPH)	
A) The Prostate	1
B) Role of androgens and estrogens in prostatic growth	3
C) Etiology of BPH	9
D) Risk factors for BPH	17
E) Diagnosis of BPH	24
F) Treatment options	29
G) Experimental models of BPH	37
II. Flavonoids	4.0
A) Chemistry	40
B) Pharmacological activities	41
C) Examples	41
D) Chrysin 1. Source	41 42
2. Chemistry	42
3. Pharmacokinetic properties	43
4. Pharmacogenetic properties	43
5. Pharmacodynamic properties	44
Aim of the work	49
Materials and Methods	50
Results	89
Discussion	116
Summary and Conclusion	123
References	127
Arabic Summary	

Oxidative stress and suppression of apoptosis play a central role in initiation and progression of benign prostatic hyperplasia (BPH). Chrysin, a natural flavone, possesses diverse biological activities, such as antioxidant, anti-inflammatory and anti-cancer activities. The aim of current study was to explore the protective effect of chrysin against testosterone-induced BPH in rats as well as underlying mechanisms. An initial dose-response study showed that when chrysin was administered at doses of (25, 50 and 100 mg/kg p.o.), 50 mg/kg of the drug was the most effective dose in preventing the increase in prostate weight, prostate weight/body weight ratio and total prostate-specific antigen level. Moreover, this dose of chrysin prevented testosterone-induced Testosterone histopathological changes. at dose of 3mg/kg subcutaneously significantly reduced glutathione level, superoxide dismutase and catalase activities and significantly increased lipid peroxidation. Caspase-3 enzyme level, Bax/Bcl-2 ratio and mRNA expression of the genes encoding for proapoptotic p53 protein & cell cycle regulator p21 protein were significantly decreased by testosterone while protein expression of proliferating cell nuclear antigen (PCNA) was increased. On the other hand, chrysin alleviated testosterone-induced oxidative stress and restored caspase-3 level, Bax/Bcl-2 ratio and mRNA expression of p53 & p21 to normal. Furthermore, chrysin protected against testosterone-mediated elevation of both nuclear factor kappa B (NF-kB) protein expression and mRNA expression of (IGF-1) & insulinlike growth factor 1 receptor (IGF-1R). The present study suggests the protective role of chrysin against testosterone-induced BPH. This could

be explained - at least partly - by virtue of its proapoptotic, antiproliferative and antioxidant effects.

Keywords: Chrysin; Benign prostatic hyperplasia; Oxidative stress; Apoptosis

List of Abbreviations

5-ARIs	5-Alpha-reductase Inhibitors
AAP	4-aminophenazone
Apaf-1	Apoptotic protease-activating factor-1
AR	Androgen Receptor
Bcl-2	B-cell lymphoma/leukemia-2
BLSA	Krimpen and Baltimore Longitudinal Study of Aging
BMI	Body Mass Index
B00	Bladder Outlet Obstruction
BPE	Benign Prostate Enlargement
ВРН	Benign Prostatic Hyperplasia
BPO	Benign Prostate Obstruction
BSA	Bovine Serum Albumin
cAMP	Cyclic Adenosine Monophosphates
CASP3	Caspase-3
CAT	Catalase
CCl ₄	Carbon tetrachloride
c-FLIP	Cellular FLICE (FADD-like IL-1β-converting enzyme)-
	Inhibitory Protein
cGMP	Cyclic Guanosine Monophosphate
COX-2	Cyclo-oxygenase -2
Ct	Cycle Threshold
CZ	Central Zone
DHBS	3,5-Dichloro-2-hydroxybenzene sulfonic acid
DHT	Dihydrotestosterone
DMSO	Dimethyl Sulfoxide
DNTB	5,5' dithiobis (2-nitrobenzoic acid)
dNTP	Deoxynucleoside Triphosphate
DRE	Digital Rectal Examination
DSS	Dextrane Sodium Sulfate
E2	Estradiol
EGF	Epidermal Growth Factor
ERs	Estrogen Receptors
FGF	Fibroblast Growth Factor
f-PSA	Free PSA
GAGs	Glycosaminoglycans
GR	Glutathione Reductase

List of Abbreviations

GSH	Reduced Glutathione
GSH-P _X	Glutathione Peroxidase
H_2O_2	Hydrogen peroxide
HMBA	2-hydroxy-4-methoxy benzoic acid
IAP	Inhibitors of Apoptosis Protein
IFN γ	Interferon gamma
IGFs	Insulin-like Growth Factors
IGFBPs	IGF-Binding Proteins
IGF-Rs	IGF tyrosine kinase Receptors
ΙκΒ	Inhibitor of kappa B
IL	Interleukin
iNOS	Inducible NO Synthase
IPSS	International Prostate Symptom Score
K ₂ HPO ₄	Dipotassium hydrogen phosphate
KGF	Keratinocyte Growth Factor
KH ₂ PO ₄	Anhydrous potassium dihydrogen phosphate
LH	Luteinizing Hormone
LHRH	Luteinizing Hormone Releasing Hormone
LPS	Lipopolysaccharide
LUTS	Lower Urinary Tract Symptoms
MDA	Malondialdeyde
MMP	Matrix Metalloproteinases
NF-κB	Nuclear Factor kappa B
NO	Nitric Oxide
OD	Optical Density
P.O.	Per Os
PCNA	Proliferating Cell Nuclear Antigen
PDE	Phosphodiesterase
PGE	Prostaglandin E
PMS	Phenazine Methosulphate
PSA	Prostate Specific Antigen
PVR	Postvoid Residual
PXR	Pregnane x Receptor
PZ	Peripheral Zone
ROS	Reactive Oxygen Species

List of Abbreviations

RT-PCR	Real Time-Polymerase Chain Reaction
S.C.	Subcutaneously
SERM	Selective Estrogen Receptor Modulators
SOD	Superoxide Dismutase
SULT	Sulfotransferase
TBA	Thiobarbituric acid
TBARS	Thiobarbituric Acid Reactive Substances
TBS	Tris Buffered Saline
TCA	Trichloroacetic Acid
TGF	Transforming Growth Factor
TNF	Tumor Necrosis Factor
TRAIL	TNF-Related Apoptosis Inducing Ligand
TUMT	Transurethral Microwave Thermotherapy
TUNA	Transurethral Needle Ablation
TURP	Transurethral Resection of the Prostate
TZ	Transition Zone
UTI	Urinary Tract Infection
VEGF	Vascular Endothelial Growth Factor
α1-AR	Alpha-1-Adrenergic Receptor
β-ΜΕ	Beta-Mercaptoethanol

Figure No.	Figure title	Page No.
1	Zonal anatomy of the human prostate	3
2	Role of androgen in the prostate growth	7
3	Balance between growth stimulatory and inhibitory factors involved in cellular homeostasis in the prostate gland	8
4	International Prostate Symptom Score (IPSS)	25
5	Chemical structure and metabolism pathway showing the steroid conversion of testosterone into dihydrotestosterone and estradiol	31
6	Schematic diagram showing the postjunctional site of action of the $\alpha 1$ -adrenoceptor antagonists as smooth muscle relaxants in the prostate gland	32
7	Basic flavonoid structure	40
8	Chemical structure of chrysin	42
9	Experimental design of the dose response study	51
10	Experimental design of the mechanistic study	53
11	Standard calibration curve of serum PSA	60
12	Standard calibration curve of MDA	64
13	Standard calibration curve Caspase-3 level	73
14	Effects of treatment with testosterone and/or chrysin on prostate weight represented as percentage of control group	93
15	Effects of treatment with testosterone and/or chrysin on prostate weight/body weight ratio represented as percentage of control group	94
16	Effects of treatment with testosterone and/or chrysin on serum PSA level represented as percentage of control group	95

Figure No.	Figure title	Page No.
17	Histological examination of hematoxylin-eosin sections of rat prostates	96
18	Effects of treatment with testosterone and/or chrysin on P53 mRNA level expressed as relative quantification (RQ) compared to the control group	98
19	Effects of treatment with testosterone and/or chrysin on P21 mRNA level expressed as relative quantification (RQ) compared to the control group	99
20	Effects of treatment with testosterone and/or chrysin on Bax mRNA level expressed as relative quantification (RQ) compared to the control group	100
21	Effects of treatment with testosterone and/or chrysin on Bcl-2 mRNA level expressed as relative quantification (RQ) compared to the control group	101
22	Effects of treatment with testosterone and/or chrysin on the ratio of Bax to Bcl-2	102
23	Effects of treatment with testosterone and/or chrysin on caspase-3 level measured as ng/mg protein	103
24	Expression of PCNA in rat prostate tissues by immunohistochemical staining	105
25	Immunohistochemical staining of nuclear factor-кВ (NF-кВ)	107
26	Effects of treatment with testosterone and/or chrysin on IGF-1 mRNA level expressed as relative quantification (RQ) compared to the control group	108
27	Effects of treatment with testosterone and/or chrysin on IGF-1R mRNA level expressed as relative quantification (RQ) compared to the control group	109

Figure No.	Figure title	Page No.
28	Effect of treatment with testosterone and/or chrysin on reduced glutathione level represented as percentage of control group	112
29	Effect of treatment with testosterone&/or chrysin on catalase activity represented as percentage of control group	113
30	Effect of treatment with testosterone&/or chrysin on superoxide dismutase activity represented as percentage of control group	114
31	Effect of treatment with testosterone&/or chrysin on lipid peroxides level represented as percentage of control group	115

List of Tables

Table No.	Table title	Page No.
1	Top 4 marketed pharmacotherapy products for prostatic therapies 2009	30
2	Sequence of primers used in RT-PCR	84
3	Effect of three different doses of chrysin on prostate weight, prostate weight/body weight ratio and serum PSA level in testosteronetreated rats	92
4	Effect of chrysin treatment (50 mg/kg) on reduced glutathione, activity of catalase and superoxide dismutase enzymes and lipid peroxides in prostatic tissues of (3mg/kg) testosterone-treated rats	111

INTRODUCTION