

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام من ١٠-٠٠% مئوية ورطوبة نسبية من ٢٠-٠٠% مؤية ورطوبة نسبية من ٢٠-٠٠% المنافلة عن ١٥-١٥-١٥ المنافلة المنافلة

بعض الوثائق

الإصلية تالفة

المعلق عبين شمس المعاددية

@ ASUNET

بالرسالة صفحات لم

STUDIES ON THE BIOCONVERSION OF GLYCYRRHIZIN

By

HALA ABDEL SALAM AMIN

B. Sc. in Microbiology/Chemistry (1991)

M. Sc. in Microbiology (1998)

For
The Degree of Doctor of Philosophy
In Science (Microbiology)

Supervised by

Prof. Dr.

ABDEL AZIZ MAHMOUD SALAMA

Prof. of Microbiology Botany

Department, Faculty of Science Cairo

University

Prof. Dr.
LOTFY ABDEL RAOUF SALLAM
Prof., of Natural and Microbial
Chemistry, Department of Chemistry
of Natural and Microbial Products
National Research Center

Botany Department Faculty of Science Cairo University

2017

2005

بينمانتالخوالخوي

وَقُل رَّبِّ أَدْخِلْنِي مُدْخُلَ صِدْقٍ وَأَخْرِجْنِي مُخْرَجَ صِدْقٍ وَاجْعَل لِّي مِن لَّدُنكَ سُلْطَاناً تُصِيراً

صدق الله العظيم صورة الإسراء الآية ٨٠

DEDICATION

To my dearest parents

To my beloved husband

To my family

I wish them the very best of all for ever.

APPROVAL SHEET

Name: Hala Abdel Salam Amin Abdel Salam

Title: Studies on the Bioconversion of Glycyrrhizin

Supervisors Committee

- Prof. Dr. Abdel Aziz Mahmoud Salama

Prof. of Microbiology, Botany Department, Faculty of Science, Cairo University

- Prof. Dr. Lotfy Abdel Raouf Sallam

Prof. of Natural and Microbial Chemistry, Department of Chemistry of Natural and Microbial Products, National Research Center Signature

IAMOHAN

Head of Bolany Départment, Faculty of Science.

ACKNOWLEDGEMENT

I wish to express my sincere gratitude to **Prof. Dr. A. M.** Salama, Professor of Botany, Faculty of science Cairo University for his kind help and constructive criticism.

I am also indebted to **Prof. Dr. L.A. Sallam**, Professor of Natural and microbial Products Chemistry, National Research Center, Cairo, for continuous encouragement, valuable guidance as well as reviewing this work.

My deep thanks and appreciation are also extended to **Prof. Dr. A.H. El-Refai**, Professor of Natural and Microbial Products Chemistry, National Research Center, for his valuable instructions in the experimental work and sincere help in preparing the manuscript. My sincere gratitude is greatly expressed to him.

Grateful thanks are also extended to **Dr. H.A. El-Minofy**, Assistant Professor of Natural and microbial Products Chemistry, National Research Center, for suggesting the topic of this work, valuable supervision during the experimental work and continuous help. My heartfelt gratitude is expressed to him.

Sincere thanks are also extended to **Dr. N. A. Hassan**, Assistant professor of Photochemistry, supervisor on FT-IR, FT-Raman Laboratory, Central Laboratory Services, National research Center, **Dr. A.E.M. Gaafar**, Assistant Professor of Photochemistry, Supervisor on NMR Laboratory, Central Laboratory Supervisor, National Research Center and **Prof. Dr. A. G. Hanna**, Professor of Natural and Microbial Products Chemistry, National Research Center, for caring out the spectral analysis and their kind help in elucidation of the chemical structures of the transformation product and reviewing this part of work.

Moreover, the authoress would like to acknowledge gratefully all the members of the Department of Chemistry of Microbial and Natural Products for their cooperation and help which enabled this work to be accomplished.

LIST OF ABBREVIATIONS

GL = Glycyrrhizin, Glycyrrhizinic acid

GA = Glycyrrhetic acid, Glycyrrhetinic acid

GAMG = Glycyrrhetic acid monoglucuronide

3-0x0-GA = 3-0x0-glycyrrhetic acid

CLS = Corn steep liquor

T.B.E. = Total bioconversion efficiency

ABSTRACT

Hala Abdel Salam Amin. Studies on the Bioconversion of Glycyrrhizin. Ph. D. Cairo University, Faculty of Science, Botany Department, 2005.

Glycyrrhizin (GL), the well-known sweet saponin of licorice, has been used as a food-additive and as a medicine. Its aglycone, glycyrrhetinic acid (GA) sowed antiinflamatory, antiulcer and antiviral properties. GA is now produced form GL by acid hydrolysis. However, it is difficult to obtain GA in a good yield by this method, because many by-products are also produced.

To produce GA from GL, we have screened microorganisms for activity to hydrolyze GL. It was found that *Aspergillus niger* NRRL 595 hydrolyzed GL to yield Glycyrrhetinic acid (GA) and 3-oxo-glycyrrhetic acid (3-oxo-GA). The conditions for cultivation of this fungus with the maximum hydrolytic activity for the maximum yield of GA were investigated. Based on the results, *A. niger* NRRL 595 was cultivated with a medium composed of 1.75 % GL, 0.5 % glucose, 0.8 % corn steep liquor at pH 6.5 at 32°C for 96 h. The cultivation of fungal cells under the latter conditions afforded GA and 3-oxo-GA in a yield of 65 % and 22 %, respectively.

A. niger NRRL 595 cells and spores - immobilized by entrapment in calcium alginate and adsorping on glass wool - were used for hydrolysis of GL to GA and 3-oxo-GA. The bioconversion efficiencies of

the immobilized cultures were less than those obtained with the free cells. In contrast to that, repeated batch biotransformation with fungal spores immobilized on glass wool could be successfully maintained for longer than 40 days. During the first 12 days of operation, (i.e. three batch cycles), the bioconversion efficiencies increased gradually and reached 93 % at the third run.

CONTENTS

CONTENTS	Page
LIST OF TABLES	0
LIST OF FIGURES	
AIM OF THE WORK	
1. INTRODUCTION AND LITERATURE REVIEW	1
1.1. Glycyrrhizin and Glycyrrhetinic acid: Occurrence and	1
structure	1
1.2. Uses of licorice, glycyrrhizin and glycyrrhetinic acid	5
1.2.1. Sweetness	6
1.2.2. Cosmetic applications	6
1.2.3. Pharmacological activities	7
1.2.3.1. Hepatoprotective activity	8
	8
1.2.3.2. Anti-inflammatory/anti-allergic activity	9
1.2.3.3. Immunostimulatory/antiviral effects	9 10
1.2.3.4. Anti-carcinogenesis	11
1.2.3.5. Antimicrobial activities	11
1.2.3.6. Adverse effects	12
1.3. Diotransformation of GL and GA	12
1.3.1. History of biotransformation	
1.3.2. Methods for biotransformation	15 15
1.3.2.1. Using free microbial cells	
1.3.2.2. Immobilized cell technology	16
1.3.2.3. Scale-up	21
1.3.3. Improvement of biotransformation of glycyrrhizin	22 25
1.3.4. Mechanisms of biotransformation	25
2. MATERIALS AND METHODS	28
2.1 Materials	28
2.1.1. Microorganisms	28
2.1.2. Types of media	28
2.1.3. Chemicals	29
2.1.4. Apparatus	29
2.1.5. Chromatography of transformation products	30
2.2. Methods	30
2.2.1. Cultivation of the experimental microorganisms	30
2.2.1.1 Maintenance of microorganisms	30
2.2.1.2. Preparation of inocula	31
2.2.1.3. Biotransformation process	31
2.2.2. Cultivation of Aspergillus niger NRRL 595	31
2.2.2.1. Maintenance	31
4.4.4. Iviamionanoc	<i>J</i> 1

CONTE	11A T 5
2.2.2.2. Preparation of spore suspension	32
2.2.2.3. Preparation of preculture	32
2.2.2.4. Immobilization techniques	32
2.2.2.4.a. Immobilization of A. niger NRRL 595 using calcium	
alginate entrapment method	32
2.2.2.4.b. Immobilization of A. niger NRRL 595 using glass wool	33
2.2.3. Biotransformation process using <i>A.niger</i> NRRL 595	34
2.2.3.1. Biotransformation with free cells	34
2.2.3.2. Biotransformation with A. niger NRRL 595 cells or	
spores immobilized in calcium alginate beads	34
2.2.3.3. Biotransformation with A. niger NRRL 595 cells or	
spores adsorbed on glass wool	35
2.2.4. Extraction and determination of the converted products	35
2.2.5. Preparation of buffer solutions	36
2.2.6. Treatment of corn steep liquor	38
2.2.7. Calculations	38
3. EXPERIMENTAL RESULTS	40
3.1. Screening experiments	40
3.1.1. Detection of transformation products produced by the	
action of A. niger NRRL 595 on GL	44
3.1.2. Isolation and identification of the transformation products	
encountered after transformation of GL by A. niger NRRL	47
595	4/
3.2. Optimization of the bioconversion of GL by A. niger NRRL	40
595 free cells	49
3.2.1. Effect of the composition of the fermentation medium	49
3.2.2. Nutritional requirements	52
3.2.2.1. Effect of glucose level	52
3.2.2.2. Effect of corn steep liquor level	55
3.2.2.3. Effect of GL level	55
3.2.3. pH-Relations	59
3.2.3.1. Using initially adjusted medium	59
3.2.3.2. Using buffered medium	5 9
3.2.4. Effect of incubation temperature	62
3.2.5. Effect of inoculum size	68
3.2.6. Effect of inoculum age	68
3.2.7. Effect of incubation period	73
3.2.8. Repeated batch bioconversion of GL with A. niger NRRL	-
595 free cells	76