

AIN SHAMS UNIVERSITY FACULTY of ENGINEERING

Electronics and Communications Engineering Department Multicast Authentication Protocol

A Thesis Submitted in partial fulfillment of the requirements for The Degree of Doctor of Philosophy in Electrical Engineering (Electronics and Communications Engineering)

Submitted by **Reham Abdellatif Abou Hogail Esmail**

M.Sc. in Electrical Engineering (Electronics and Communications engineering) Cairo University, 2004)

Supervised by

Prof. Dr.

Assoc. Prof.

Slawa Hussein Elramly

Heba Kamal Aslan

Department of Electronics and Communications Engineering Faculty of engineering, Ain Shams University **Electronics Research Institute**

Cairo, Egypt 2008

AIN SHAMS UNIVERSITY FACULTY of ENGINEERING

Electronics and Communications Engineering Department

Judgment Committee

Presented by: Reham Abdellatif Abou Hogail

Thesis Title: Multicast Authentication Protocol

Degree: Doctor of philosophy in Electrical Engineering

Name, Title and Affiliation

Signature

Prof. Dr. Abdelrahman Hussein El-Sawy

Electronics and Communication Engineering Dept.

Faculty of Engineering, Helwan University (Examiner)

Prof. Dr. Hadia Mohammed El-Hennawy

Electronics and Communication Engineering Dept.

Faculty of Engineering, Ain Shams University (Examiner)

Prof. Dr. Salwa Hussein El-Ramly

Electronics and Communication Engineering Dept.

Faculty of Engineering, Ain Shams University (Supervisor)

Assoc. Prof. Dr. Heba Kamal Aslan

Informatics Dept.

Electronic Research Institute (Supervisor)

Date:30-10-2008

ACKNOWLEDEMENTS

الحمد شه رب العالمين

I thank God, my country, and my supervisors Prof. Salwa Hussein Elramly and Associated prof. Heba Kamal Aslan for great effort in this study.

Prof. Dr. Salwa El Ramly gave me the valuable suggestions, guiding and advices, which raises my thinking way.

I thank my supervisor Associate prof. Heba Kamal Aslan for her great effort in many stimulating discussions. The reading of many references and the corrections led to improve the presented work.

I would like to thank Prof. Dr. Ibrahim Metawie, the professor in the National Institute of Standard for his encouragement.

I am indebted to my parents, my sister, my brothers, the rest of my family, and all my friends for keeping my morals high.

Special thanks to my mother, the most compassionate person in the world.

My deep thanks to my husband, for his help, support, and understanding. He was the friend, the father, the brother, and the husband.

Many thanks to my darling daughter, and my darling son.

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of

Philosophy Doctor in Electrical Engineering (Electronics

Communication Engineering).

The work include in this thesis was carried out by the author at the

Electronics and Communications Engineering Department, Faculty of

Engineering, Ain Shams University, Cairo, Egypt.

No part of this thesis was submitted for a degree or a qualification at any

other university or institution.

Name: Reham Abdellatif Abou Hogail.

4

Contents

1 (CHAPTER 1 16
IΝ	VTRODUCTION16
	1.1 INTRODUCTION16
	1.2 SECURITY GOALS RELATED TO PROTECTIN6
	COMMUNICATIONS13
	1.3 SECURITY GOALS RELATED TO PROTECTING
	SYSTEMS17
	1.4 TYPES OF ATTACKS18
	1.5 NETWORK TRANSMISSION TYPES24
	1.6 THESIS OBJECTIVES27
	1.7 THESIS OUTLINE27
2	CHAPTER 2
M	ULTICAST AUTHENTICATION29
	2.1 INTRODUCTION
	2.2 MULTICAST PROPERTIES30
	2.3 SECURITY ISSUES30
	2.4 SECURITY SOLUTIONS32
	2.5 PROPOSED SOLUTIONS IN MULTICAST
	AUTHENTICATION38
	2.6 CONCLUSIONS63
3	CHAPTER 3 67
F	ORMAL VERIFICATION OF CRYPTOGRAPHIC PROTOCOLS.63
	3.1 INTRODUCTION67
	3.2 Type I (MODELING AND VERIFYING PROTOCOLS
	USING SPECIFICATION LANGUAGES)67

	3.3 Type II (EXPER	T SYSTEMS)	70
	3.4 Type III (ALGEI	BRAIC TERM REW	RITING)73
	3.5 Type IV (FORM	AL LOGICAL MOD	ELS)75
	3.6 FORMAL SPEC	CIFICATION LANG	UAGES AND TOOLS
	FOR A	UTOMATICALLY	ANALYZING
	CRYPTOGRAP	HIC PROTOCOLS	92
	3.7 CONCLUSIONS	S	97
4 <i>C</i>	HAPTER 4		99
LAR1	(Latif-Aslan-Raml	y2) MULTICAST	AUTHENTICATION
PRO'	госоL		99
	4.1 INTRODUCTIO	N	99
	4.2 LAR1 PROTOC	OL	100
	4.3 COMPARISON	WITH OTHER PRO	TOCOLS106
	4.4 LOGICAL ANA	LYSIS OF LAR1	116
	4.5 CONCLUSIONS	S	124
5 C	HAPTER 5		126
LAR2	(Latif-Aslan-Raml	y2) MULTICAST	AUTHENTICATION
PRO'	госоь		126
	5.1 INTRODUCTIO	N	126
	5.2 LAR2 PROTOC	COL	127
	5.3 COMPARISON	WITH OTHER PRO	TOCOLS134
	5.4 LOGICAL ANA	LYSIS OF LAR2	145
	5.5 CONCLUSIONS	S	153
6 C	HAPTER 6		155
CON	CLUSIONS		155
	6.1 CONCLUSIONS	S	155
	6.2 FUTURE WORK	X	157
REFI	FRENCES		150

PURI ICATIONS FROM TI	THE THESIS 1	67
PUDLICATIONS FROM 11	TE ITESIS	O/

List of Figures

Fig 1.1 Man-In-The-Middle attack	21
Fig 1.2 Unicast transmission model	22
Fig 1.3 Broadcast transmission model	23
Fig 1.4 One multicast stream	24
Fig 1.5 Multicast IP address [4]	25
Fig 2.1 Multicast security issues and solutions [7]	32
Fig 2.2 Source authentication schemes	39
Fig 2.3 Packet chaining multicast authentication scheme [9]	41
Fig 2.4 Star chaining [11]	42
Fig 2.5 Tree chaining technique [11]	44
Fig 2.6 Tree chaining of the Wong and Lam scheme [11]	45
Fig 2.7 authenticated packet stream in SAIDA system [14]	49
Fig 2.8 Pannetrat and Molva technique [15]	52
Fig 2.9 MBMAEC multicast authentication protocol [20]	54
Fig 2.10 TESLA multicast authentication scheme [20]	56
Fig 2.11 EMSS system[21]	57
Fig 2.12 Packet structure of Ritech Mukherjee scheme [23]	59
Fig 2.13 Design more efficient signature schemes	60
Fig 2.14 Basic BiBa scheme [24]	62
Fig 3.1 communicating finite state machines [31]	71
Fig 4.1 LAR1 Multicast Authentication Protocol	102
Fig 4.2 communication overhead per packet in bytes for various	values of
packet loss rate R	116
Fig.5.1. LAR2 Multicast Authentication Protocol	129

Fig.	5.2.	commu	nication	overhead	per	packet	in	bytes	for	various	values
of p	acke	et loss ra	te <i>R</i>								145

List of Tables

Table.2.1 Comparison between Wong-Lam, TESLA, Pannetrat-Molva
and PRABS66
Table.4.1 Comparison between Wong-Lam, TESLA, Ritesh Mukherjee
and LAR1114
Table.4.2 Communication overhead per packet in bytes
Table.5.1 Comparison between Wong-Lam, Pannetrat-Molva, SAIDA,
PRABS and LAR2142
Table.5.2 communication overhead per packet in bytes for various values
of packet loss rate R144

List of Abbreviations

AAPA Automatic Authentication Protocol Analyzer

BAN Burrows, Abadi, and Needham

CAPSL Common Authentication Protocol Specification Language

FDR Failures Divergences Refinement Checker

HOL Higher Order Logic

IDA Information Dispersal Algorithm

IGMP Internet Group Membership Protocol

IP Internet Protocol

ISL Interface Specification Language

LOTOS Language of Temporal Ordering Specification

MAC Message Authentication Code

MBMAEC MAC-Based Multicast Authentication using Erasure

Code

MD5 Message Digest version5

MuCAPSL Multicast Common Authentication Protocol Specification

Language

PRABS Pollution Resistant Authenticated Block Streams

TRNG True Random Number Generator

RSA Rivest-Shamir-Adelman

SAIDA Signature Amortization using IDA

List of Symbols

Count Counter length

E The erasure code function

Edec The erasure decoding function

EncLen Length of the symmetric encryption

F A pseudo random function

H The hash function

Hout Length of the hash function

 K_a^{-1} Private key of A

 K_g The group key

KeyLen Key length

MAC Length of the MAC

 P_i Packet number i

R The loss rate

RN Length of the random number

Sig The signature length

UMACout Length of the UMAC function output

Thesis Abstract

Multicast gives professional large-scale content distribution by providing an efficient transport mechanism for one-to-many and many-to-many communication. Over the years, multicast has been the topic of many research, and development efforts. These efforts have continued to transform multicast into a technology that can be trusted by a large number of applications. Therefore, security in multicast content distribution is an important issue.

There is a number of security issues in multicast communication directly related to the specific nature of multicast. There has been many researches that provide solutions to many of these security issues. Some of these solutions are ready for operation, some are still under development, and others are in the primary phases of research.

In this thesis, we concentrate on the multicast authentication problem. two methods are described for authenticating multicast packets. Erasure code function is used to amortize a single signature operation over multiple packets. This technique is especially efficient in terms of communication overhead, because the essential elements needed for authentication are one MAC per packet and one signature per group of packets.

The first proposed protocol is concerned with the real time applications; it is based on the idea of dividing the stream into blocks of m packets.

The UMAC of each packet is calculated, and then the signature is calculated over the concatenation of all UMAC of the packets. The proposed scheme resists packet loss by using erasure code functions over the signature and the UMAC of the packets. To resist pollution attacks, our scheme computes the UMAC of the erasure code output. To resist replay attacks, a counter number is added to each packet. The proposed scheme is compared to other multicast authentication protocols. The comparison shows that the proposed scheme has the following advantages: first, it has low computation and communication overheads; second it has reasonable buffer requirements. Furthermore, it resists packet loss, pollution attacks, and replay attack. This protocol assumes that the group members are trusted entities and are not likely to be disturbing the system themselves.

The second proposed protocol is for general applications, different types of group members. It is based on the idea of dividing the stream into blocks of *m* packets. The digital signature is calculated over a generated random number. The proposed scheme resists packet loss by using erasure code functions over the signature. To resist pollution attacks, our scheme computes the UMAC of the erasure code output. To resist replay attacks, the generated random number is changed with every block. The proposed scheme is compared to other multicast authentication protocols. The comparison shows that the proposed scheme has the following advantages: first, it has low computation and communication overheads and it has reasonable buffer requirements. Furthermore, it resists packet loss, pollution attacks and replay attacks.

To evaluate the correctness of our scheme, we analyze our two techniques with a known logical analysis technique. First, we give a survey of the formal methods that are used in the analysis of cryptographic protocols. We use Meadows's classification which divides the analysis techniques into four types.

The Type I approach models and verifies a protocol using specification languages and verification tools not specifically developed for the analysis of cryptographic protocols. In Type II, a protocol designer develops expert systems to create and examine different scenarios, from which one may draw conclusions about the security of the protocols being studied. Type III approach develops a formal model based on the algebraic term-rewriting properties of cryptographic systems. Finally, the IV approach models the requirements of a protocol family using logics developed specifically for the analysis of knowledge and belief.

Most of the research and the most interesting results are in Type IV approach, such as Burrows, Abadi and Needham logic; we present this technique and its language. We make verification of the two presented protocols using the BAN logic. The verification results show that these protocols achieve their goals.