Assessment of conserved peptides within the envelope (E2) glycoprotein of hepatitis C virus as candidates for development of neutralizing antibodies

A Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree of

PHD

In

Pharmaceutical Sciences (Microbiology and Immunology)

By

Yasmine Sayed Abd El Rahim El-Abd

Assistant Researcher

Biomedical Technology Department Genetic Engineering Division

National Research Center

Under supervision of

Late Prof.Dr. Hussein A. Shoeb Prof.Dr. Alaa El Dien.S.Hosny

Prof. of Microbiology and Immunology Prof. of Microbiology and Immunology

Faculty of Pharmacy, Cairo University.

Prof.Dr. Mostafa K. Al-Awady Dr. Ashraf A. Tabll

Prof. of Molecular Biology Ass. Prof. of Biomedical Technology

National Research Center.

Microbiology and Immunology Department Faculty of Pharmacy, Cairo University 2010

بسم الله الرحمن الرحيم

قالوا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم

صدق الله العظيم

Dedication

I dedicate this work

To my family:

My Kind Mum

My Great Dad

My Beloved Sister

My Dearest Husband

My sweethearts Hamdy & Farida

I thank God for choosing you to be my family
Thank you for supporting me
With kindness, patience, patience, patience and
love

Yours,

Yasmine Sayed El Abd

To My Dear Husband

I am very grateful & pleased with Everything you do for me

Thanks a lot for your

Encouragement

Thoughtfulness

Assistance

Patience

Care

And

Love

To My little angles

Hamdy & Farída

I hope one day,
You read this thesis
& be proud that
I'm your mother

Thanks God
For the Gorgeous
& Precious Gift
My sweethearts

Hamdy & Farída

Who fill my life with Happiness Smiles & Blesses

Contents

	Pages
Acknowledgement	Ī
Abstract	II
List of abbreviations	III
List of figures	IV
List of tables	V
1-Introduction	1
2-Literature review	3
2.1 Discovery of Hepatitis C Virus	3
2.2 Epidemiology of HCV	4
2.3 General modes of HCV transmission	5
2.4 HCV in Egypt	7
2.5 HCV genome organization:-	8
2.5.1 Core protein	10
2.5.2 E1 and E2 Envelope Glycoproteins	10
2.5.3 p7 protein	11
2.5.4 NS2 protein	11
2.5.5 NS3–4A complex	11
2.5.6 NS4B protein	12
2.5.7 NS5A protein	12
2.5.8 NS5B protein	12
2.6 Genetic diversity	13
2.7 HCV life cycle	14
2.7.1 Attachment and Entry	16
2.7.1.1 Tetraspanin CD81	16
2.7.1.2 The human scavenger receptor class B type I (SR-BI)	17
2.7.1.3 The tight junction protein claudin-1 (TJ CLDN1)	18
2.7.1.4 Glycosaminoglycans (GAGs)	18
2.7.1.5 Low-density lipoprotein (LDL) receptor	18
2.7.2 Translation and Polyprotein processing	19
2.7.3 RNA replication	21
2.7.4 Viral assembly and release	22
2.8 Model Systems for Studying HCV Replication	23
2.8.1 The Replicon system:	23
2.8.2 Infection of primary cell cultures and cell lines	25
2.8.3 HCV-like particles and HCV pseudo particles	29
2.8.4 Transfection of cell lines with cloned HCV genomes	30
2.9 Diagnosis of Hepatitis C virus infection and laboratory monitoring of its therapy	33
2.9.1 Serological Tests Used for the Diagnosis of HCV infection	33
2.9.1.1 Anti-HCV Screening Tests	33

2.9.1.2 Anti HCV supplementary or confirmatory tests.	34
2.9.1.3 HCV Core antigen test	35
2.9.2 Molecular Biological Techniques in the Diagnosis of	36
HCV Infection.	
2.9.2.1 Qualitative HCV RNA Tests	36
2.9.2.2 Quantitative HCV RNA Tests	38
2.10 Genotyping/Subtyping of HCV	39
2.11 HCV Treatment	40
2.11.1 Interferon-Based Therapies	40
2.11.2 New Therapeutic Approaches	42
2.12 Adaptive immunity to HCV	46
2.12.1 Cellular immune response to HCV	46
2.12.2 Humoral (antibody-mediated) immune response to HCV	47
2.12.2.1 Neutralizing antibodies and control of HCV infection	49
2.12.2.2 Viral escape mechanisms from humoral immunity	52
2.12.2.3 Viral epitopes that are targeted for neutralization	54
2.13 Approaches for HCV vaccine development	57
2.13.1 Examples of attempts for HCV vaccines	59
2.13.1.1 Preventive vaccines	59
2.13.1.2 Therapeutic vaccines in clinical trials	59
3. Materials and Methods	62
3.1 Design and synthesis of HCV E2 conserved peptides	62
3.2 Detection of the immunogenic activity of the E2 synthetic	64
peptides	04
3.2.1 Human sera	64
3.2.1.1 HCV Infected Sera	64
3.2.1.2 Control sera	64
3.2.2 Enzyme linked immunosorbent assay (ELISA)	65
3.2.2.1 Reagents and buffers	65
3.2.2.1.4 Substrate	66
3.2.2.1.5 Stopper	66
3.2.2.2 Assay condition	66
3.3 Production and purification of goats' polyclonal	67
3.3.1 Immunization of goats and production of polyclonal antibodies	67
3.3.2 Purification and evaluation of the produced goat	68
polyclonal antibodies	00
3.3.2.1 Procedures of goat IGg purification	68
3.3.2.2 Sodium dodecylsulphate polyacrylamide gel	60
electrophoresis (SDS-PAGE)	69
3.3.2.2.1 Reagents	69

3.4 Testing the affinity and activity of the produced purified goats' antibodies	70
3.4.1 Evaluation by ELISA to determine the reactivity of	
the generated antibodies	70
3.4.1.1 Effect of different temperatures on the activity of the	
generated goat HCV antibodies	71
3.4.2 Reactivity of the generated goat HCV antibodies	
against corresponding synthetic peptides using Dot-	71
Enzyme Immunoassay (Dot-EIA)	, 1
3.5 Checking the sustenance of goat IGg production levels	
throughout the whole immunization protocol	72
3.6 Comparison between E2 antibodies titers in chronic HCV	
patients versus super-immunized goats	73
3.7 Test for efficacy of goat antibodies in detection of HCV	
antigens	73
3.7.1 ELISA test for E2 epitopes on HCV particles using the	
generated goat antibodies	73
3.7.2. Western blotting technique for detection of E2 epitopes	- 4
on HCV particles using the generated goat antibodies	74
3.8 Effect of Pep.38 on Peripheral blood mononuclear cell	75
proliferation of immunized goats	75
3.8.1 Separation of peripheral blood mononuclear cells	76
3.8.2 FACS Analysis	76
3.9 Establisment of cell culture system infected with HCV	77
3.9.1 Cell line	77
3.9.2 Culturing of Huh7Cell line	77
3.9.2.1 Procedure	77
3.9.3 Infection of cultured Huh7 cell line with HCV positive sera	78
3.10 Evaluation of HCV infection in Huh7 cell culture system	79
3.10.1 Total Cellular RNA Extraction	79
3.10.1.1 Solutions	79
3.10.2 Reverse transcription polymerase chain reaction (RT-	0.1
PCR) amplification of HCV RNA	81
3.10.2.1 Reagents, reaction mixture and program	81
3.10.2.2 Agarose gel electrophoresis	82
3.10.3 Western blott analysis, to test the translation of viral	02
antigens, in lysates of infected Huh7 cells.	83
3.11 Evaluation of the HCV neutralizing activity of the	84
generated goat E2 antibodies.	04

3.11.1 Determination of the optimum blocking concentration of the goat anti-E2 antibodies.	84
3.11.2 The blocking activity of the optimium goat E2 antibodies' neutralizing concentrations against cells infected with high HCV viral loads.	86
3.11.3 Qualitative evaluation of combined effect of goat E2 antibodies that block HCV infection <i>invitro</i> .	86
3.11.4 Quantitative evaluation of combined effect of goat E2 antibodies that block HCV infection <i>invitro</i>	87
3.11.5 Effect of HCV viral load infectivity on Huh7 cultured cells and on the blocking activity of the goat E2 antibodies.	88
3.12 Evaluation of the reactivity of the generated E2 antibodies at the translational level.	89
3.12.1 Western blot analysis of infected Huh7 cells using the goat antiPep.38 to detect viral E2 antigens.	89
3.12.2 Intracellular HCV immunostaining assay.	90
3.12.3 Flow cytometric analysis of surface stained HCV E2 antigens on the infected Huh7 cells.	91
3.13 Statistical analysis	91
4. Results	92
4.1 Design and synthesis of HCV E2 conserved peptides	92
4.2 Detection of the immunogenic activity of the E2 synthetic peptides	94
4.3 Production and purification of goats' polyclonal antibodies against the conserved E2 synthetic peptides	96
4.4 Testing the affinity and activity of the produced purified goats' antibodies	98
4.4.1 Evaluation by ELISA to determine the reactivity of the generated antibodies	98
4.4.1.1 Effect of different temperatures on the activity of the generated goat HCV antibodies	100
4.4.2 Reactivity of the generated antibodies against	
corresponding using Dot-Enzyme Immunoassay (Dot- EIA) synthetic peptides	102
4.5 Checking the sustenance of goat IGg production levels throughout the whole immunization protocol	103
4.6 Comparison of E2 antibody titer in chronic HCV patients versus super-immunized goats	104

4.7 Test for efficacy of goat antibodies in detection of HCV antigen	106
4.7.1 ELISA test for E2 epitopes on HCV particles using the	
generated goat antibodies	106
4.7.2 Western blotting technique for detection of E2 epitopes	108
on HCV particles using the generated goat antibodies	100
4.8 Effect of Pep.38 on proliferation of Peripheral blood	110
mononuclear cells (PBMCs) of immunized goats	
4.9 <i>Invitro</i> propagation of Huh7 cell line	112
4.10 Evaluation of HCV infection in Huh7 cell culture system.	114
4.10.1 Reverse transcription polymerase chain reaction (RT-	114
PCR) amplification of HCV RNA	
4.10.2 Western blott analysis, to test the translation of viral antigens, in lysates of infected Huh7 cells	116
4.11 Evaluation of the neutralizing activity of the generated	
goat E2 antibodies against HCV	118
4.11.1 Determination of the optimum blocking concentration	
of the goat anti-E2 antibodies	118
4.11.2 The blocking activity of the optimium goat E2	
antibodies' neutralizing concentrations against cells	122
infected with high HCV viral loads	
4.11.3 Qualitative evaluation of combined effect of goat E2	124
antibodies that block HCV infection invitro	124
4.11.4 Quantitative evaluation of combined effect of goat E2	100
antibodies that block HCV infection invitro	126
4.11.5 Effect of HCV viral load infectivity on Huh7 cultured	
cells and on the blocking activity of the goat E2	128
antibodies	
4.12 Evaluation of the reactivity of the generated E2	122
antibodies at the translational level	133
4.12.1 Western blot analysis of infected Huh7 cells using the	133
goat antiPep.38 antibody to detect viral E2 antigens	133
4.12.2 Intracellular HCV immunostaining assay	135
4.12.3 Flow cytometric analysis of surface stained HCV E2	137
antigens on the infected Huh7 cells	
5-Discussion	139
6-Summary	148
7-Conclusion	153
8-References	154
Arabic summary	VI

ACKNOWLEDGMENT

I thank **ALLAH** for giving me the ability and enthusiasm to complete this work and for granting me with the most respectable and great supervisors.

I would like to express my deepest appreciation, gratefulness & sincere thanks to the kind soul of my great late Professor Dr. Hussein A. Sheob, Professor of microbiology and immunology, Faculty of Pharmacy, Cairo University for his kind supervision, help, encouragement, guidance and advice. It was really a gift from GOD to deal with such a person who is always giving. Peace upon his soul.

I would like to express my thanks and gratitude to **Professor Dr. Alaa El Dien M.S. Hosny**, Professor of microbiology and immunology, Faculty of Pharmacy, Cairo University for his kind supervision, help, encouragement, guidance and advice.

My deepest heartfelt gratefulness and appreciation is to **Professor Dr. Mostafa K. El Awady**, Professor of Molecular Genetics, Biomedical Technology Department, National Research Center, for suggesting the point of this thesis and for his kind supervision, continuous support and valuable guidance. I am very lucky to have this great opportunity to be one of his students.

My sincere thanks and gratitude to **Dr. Ashraf abdou tabll**, assistant professor and head of Biomedical Technology Department, National Research Center for his kind supervision, continuous support, valuable guidance and generous help in all the theoretical and practical aspects

also for his encouragement to submit articles write projects and join conferences everywhere. I am honored having him as an eminent member of the supervision part.

I am deeply indebted to **Dr. Noha Gammal El-Din**, Researcher, Biomedical Technology Department, National Research Center and internal supervisor for this work in the NRC, for her sincere guidance, generous help in all the theoretical and practical aspects and for building up the hypothesis related to the results, encouragement, patience and love. No words are sufficient to express heartfelt thanks to her.

I would like also to thank my colleagues Reem El Shenawy, Rehab Mostafa and Khaled Atef, Assistant Researchers, Biomedical Technology Department, National Research Center, for their help, support continuous encouragement, advice, care & kindness.

I would like to express my thanks to **Dr Mahmoud Hefnawy**, Researcher, National Research Center for his kind help with bioinformatic techniques for peptides design and my colleague **Ahmad Noshy**, Assistant Researcher, Biomedical Technology Department, National Research Center for his kind assistance with computer skills.

The present work is supported in part by National Research Center project number: 8041177 to Dr. Ashraf Tabll

Finally, I would like to express my deep thanks to my friends, colleagues and to everybody in Biomedical Technology Department, who helped me to accomplish this work.

Abstract

The reason(s) why human antibodies raised against hepatitis C virus do not offer protection against multiple viral infections may be related to either genetic variations among viral strains, low titers of anti E2 antibodies or interference of none or low neutralizing antibodies with the function of neutralizing antibodies. This study was designed to assess the immunogenic properties of genetically conserved peptides derived from envelope E2 region and test their neutralizing activities to determine the possibility of their development to potential therapeutic and/or prophylactic vaccines against HCV. Goats immunized with E2 conserved synthetic peptides termed Pep.36 (a.a 430-447), Pep.37 (a.a 516-531) and Pep.38 (a.a 412-420) generated high titers of antibody responses higher than comparable titers of antibodies to the same epitopes in chronic HCV patients. Also Pep.38 elicited approximately 2 fold increase in cell proliferation of specific antibody-secreting peripheral mononuclear cells from immunized goats. When using *invitro* culture model of Huh7 cell lines for infection and neutralization experiments antiPep.37 and anti Pep.38 were proven to be neutralizing to HCV particles in sera from patients infected predominantly with genotype 4a (75% & 87.5% respectively). On the other hand antiPep.36 exhibited weak viral neutralization capacity on the same samples (31.25%). Taking together the results of humoral immunity and cellular responses suggest that E2 conserved peptides Pep.37 and Pep.38 represent essential components of a candidate peptide vaccine against HCV infection

Key words

Hepatitis C virus (HCV), anti E2 antibodies, neutralizing antibodies, invitro culture model for HCV, candidate peptide vaccine for HCV.

List of Abbreviations

a.a Amino acid Abs Antibodies

BCIP/NBT 5-Bromo-4-Chloro-3'-Indolyphosphate p-Toluidine

Salt / Nitro-Blue Tetrazolium Chloride

bDNA Branched DNA

bp Base pair

BSA Bovine Serum Albumin

C Cytidine

CD Cluster of differentiation

Co₂ Carbon dioxide
DAB Diaminobenzidine
ddH₂O Double distilled water

DMEM Dulbecco's Modified Eagle's Medium

DMSO Dimethylsulfoxide
DNA DeoxyripoNucleic Acid

dNTP Deoxynucleoside Triphosphate
Dot-EIA Dot Enzyme Immunoassay

E Envelop

E1 Envelope protein 1 E2 Envelope protein 2

ECMV Encephalomyocarditis virus

ELISA Enzyme Linked Immunosorbent Assay

EMCV Encephalomyocarditis ER Endoplasmic Reticulum

FACS Fluoresence Activated Cell Sorting

FBS Fetal Bovine Serum FCS Fetal Calf Serum

FITC Fluorescein isothiocyanate

GAGs Glycosaminoglycans

gps glycoproteins

GTP guanosine triphosphate HAV Hepatitis AVirus HBV Hepatitis B Virus

HCC Hepatocellular Carcinoma

HCV Hepatitis C Virus

HCVcc Cellular clone of HCV

HCVpp Hepatitis C Virus pseudoparticles

HDL High Density Lipoprotein