STUDY OF THE REACTIONS OF SOME METAL CARBONYLS WITH SOME QUINOXALINE DERIVATIVES

A Thesis Submitted to

Chemistry Department, Faculty of Science, Ain Shams University in the Fulfillment of the Requirements

For

The Degree of Doctor Philosophy in Science (Chemistry)

Presented By

Khalifa Abdoalsalam Alfallous

M.SC. in Chemistry (2004)

Under Supervisions of

Prof. Dr. Mohammed Fathi El-Shahat

Professor of Inorganic and Analytical Chemistry Faculty of Science, Ain Shams University

Dr. Attia S. Attia

Assistant Professor of Inorganic Chemistry Faculty of Science, Ain Shams University

Dr. Mostafa Yassen Nassar

Lecturer of Inorganic Chemistry Faculty of Science, Banha University

بسم الله الرحمن الرحيم

" وَيَسْأَلُونَكَ عَنِ الرُّوحِ قُلِ الرُّوحُ مِنْ أَمْرِ رَبِّي وَمَا أُوتِيتُم مِّن الْعِلْمِ إِلاَّ قَلِيلاً "

صدق الله العظيم سورة الإسراء آية (85)

First of all praise and thanks to **ALLAH** providing me with time and effort to accomplish this thesis.

It is a pleasure to express my deepest thanks and profound respect to my honored professor, Prof. Dr. Mohammed Fathi El-Shahat Professor of Inorganic and Analytical Chemistry, Faculty of Science, Ain Shams University for his continuous encouragement and support that he gave me throughout the whole work. It has been an honor and a privilege to work under his generous supervision.

I wish to express my deep gratitude to Dr. Attia S. Attia Assistant Professor of Inorganic Chemistry, Faculty of Science, Ain Shams University for his enthusiasm, keen supervision, continuous encouragement and meticulous guidance and follow up throughout this work.

A special tribute and cordial thanks are paired to Dr. Mostafa Yassen Nassar Lecturer of Inorganic Chemistry, Faculty of Science, Banha University for his authentic guidance, meticulous supervision. He gave me a lot of her time, effort and experience to accomplish this work.

At last but certainly not least, my special thanks to my family specially my wife for support, help and understanding.

Khalifa Abdoalsalam Alfallous

Published Work From The Thesis

Authors: Attia S. Attia , Ayman A. Abdel Aziz, Khalifa A. Alfallous, M.F. El-Shahat

Title: A novel bonding of 6,7-dichloroquinoxlaine-2,3-dione, DCQX, to two molybdenum (0) metal centers: Synthesis, characterization, biological activity studies and semiempirical calculations of $[(bpy)_2Mo(\mu_2-\kappa^2:\eta^6-DCQX)Mo(CO)_3]$ complex

Journal: Polyhedron 44 (2012) 238-244

Authors: Attia S. Attia , Ayman A. Abdel Aziz, Khalifa A. Alfallous, M.F. El-Shahat

Title: New diethoxo-bridged dinuclear Cr(III) complexes with derivatives

of the quinoxaline-2,3-dione ligand and 2,2`-bipyridine as a co-ligand: Syntheses, spectral characterizations, magnetic properties, antimicrobial inhibitory activities and interpretation of the electronic absorption spectra using the ZINDO/S-CI semi-empirical method

Journal: Polyhedron 51 (2013) 243-254

CONTENTS

		Page
	Summary	I
	Chapter I	
	General introduction	
I.1	Introduction	1
	Aim of The Work	11
	Chapter II	
	Experimental section	
II.1	Reagents	12
II.2	Instruments	12
II.3	Ligands Syntheses	15
II.3.1	Synthesis of 6,7-dichloroquinoxaline-2,3-dione (DCQX)	15
II.3.2	Synthesis of 6,7-dimethylquinoxaline-2,3-dione (DMQX)	16
II.4	Complexes Syntheses	16
II.4.1	Synthesis of Mo ₂ (bpy) ₂ (DCQX)(CO) ₃ complex	16
II.4.2	Synthesis of Mo ₂ (bpy) ₂ (DMQX)(CO) ₃ complex	17
II.4.3	Synthesis of [Cr(DCQX)(bpy)EtO] ₂ complex	17
II.4.4	Synthesis of [Cr(DMQX)(bpy)EtO] ₂ complex	18
II.4.5	Synthesis of [Ru(DCQX) (CO) ₂ (EtO)] ₂ complex	18
II.4.6	Synthesis of Ru ₃ (DMQX) ₂ (CO) ₄ (C ₆ H ₆) ₂ complex	19

		Page
	Chapter III	
	Result and discussion section	
III.1	Quinoxaline-2,3-dione ligands	24
III.1.1	6,7-dichloroquinoxaline-2,3-dione (DCQX)	24
III.1.2	6,7-dimethylquinoxaline-2,3-dione (DMQX)	29
III.2	Molybdenum complexes of quinoxaline-2,3-dione derivatives	33
III.2.1	Introduction	33
III.2.2	$Mo_2(bpy)_2(DCQX)(CO)_3$ complex	34
III.2.3	$Mo_2(bpy)_2(DMQX)(CO)_3$ complex	55
III.24	Antimicrobial Activities of $Mo_2(bpy)_2(QX)(CO)_3$ complexes	65
III.3	Chromium complexes of quinoxaline-2,3-	68
	dione derivatives	
III.3.1	Introduction	68
III.3.2	$[Cr(QX)(bpy)EtO]_2$ complexes	70
III.3.3	Antimicrobial Activities of [Cr(QX)(bpy)EtO] ₂ complexes	101
III.4	Ruthenium complexes of quinoxaline-2,3dione derivatives	105
III.4.1	Introduction	105
III.4.2	$[Ru(DCQX)(CO)_2(EtO)]_2$ complex	106
III.4.3	$Ru_3(DMQX)_2(CO)_4(C_6H_6)_2$ complex	125
III.4.4	Antimicrobial Activities of ruthenium complexes	141
	References	143
	Arabic Summary	

LIST OF FIGURES

Fig. No.	Title	Page
	Chapter I	
I.1	The structure of <i>trans</i> -[Pd(OAc) ₂ (N1-C ₈ H ₅ N ₂ Me-5) ₂] complex	5
I.2	The structure of [Ag ₅ (bpsq) ₂ (NO ₃) ₄]NO ₃ complex	5
I.3	The structure of 3-hydrazino quinoxaline-2-one complexes: $ \begin{array}{l} M=Cr(III),\ X=Y=Cl,\ Z=H_2O,\ M=Mn(II)\ or\ Ni(II),\ X=Y=Z=H_2O,\\ M=\ Co(II),X=NH_3,\ and\ Y=Z=H_2O. \end{array} $	6
I.4	The cyclic structure Zn(II) complex of tricyclic quinoxaline	7
I.5	The structure of $(\eta^6\text{-benzene})Ru(\eta^4\text{-benzene})$ complex.	9
I.6	The structure diruthenium complexes of 2,3-naphthalenediolate (left) and catecholate (right).	10
	Chapter III	
III.1	The IR spectrum of DCQX ligand	26
III.2	The 1HNMR spectrum of DCQX ligand	27
III.3	The UV-vis spectrum of DCQX ligand	28
III.4	The IR spectrum of DMQX ligand	30
III.5	The 1HNMR spectrum of DMQX ligand	31
III.6	The UV-vis spectrum of DMQX ligand	32
III.7	The mass spectrum of Mo ₂ (bpy) ₂ (DCQX)(CO) ₃ complex	36
III.8	The IR spectrum of Mo ₂ (bpy) ₂ (DCQX)(CO) ₃ complex	40
III.9	The most stable geometry of $Mo_2(bpy)_2(DCQX)(CO)_3$ complex	44
III.10	The 1HNMR spectrum of Mo ₂ (bpy) ₂ (DCQX)(CO) ₃ complex	48
III.11	The TGA spectrum of Mo ₂ (bpy) ₂ (DCQX)(CO) ₃ complex	51
III.12	The UV-vis spectrum of Mo ₂ (bpy) ₂ (DCQX)(CO) ₃ complex	54
III.13	The mass spectrum of Mo ₂ (bpy) ₂ (DMQX)(CO) ₃ complex	56
III.14	The IR spectrum of Mo ₂ (bpy) ₂ (DMQX)(CO) ₃ complex	57
III.15	The 1HNMR spectrum of Mo ₂ (bpy) ₂ (DMQX)(CO) ₃ complex	59
III.16	The TGA spectrum of Mo ₂ (bpy) ₂ (DMQX)(CO) ₃ complex	62
III.17	The UV-vis spectrum of Mo ₂ (bpy) ₂ (DMQX)(CO) ₃ complex	64
III.18	The mass spectrum of [Cr(DCQX)(bpy)EtO] ₂ complex	73

Fig. No.	Title	Page
III.19	The mass spectrum of [Cr(DMQX)(bpy)EtO] ₂ complex	74
III.20	The IR spectrum of [Cr(DCQX)(bpy)EtO] ₂ complex	77
III.21	The IR spectrum of $[Cr(DMQX)(bpy)EtO]_2$ complex	78
III.22	Suggested structure for the $[Cr(DMQX)(bpy)EtO]_2$ complexes	79
III.23	The isomers of the $[Cr(DCQX)(bpy)EtO]_2$ complex and $[Cr(DMQX)(bpy)EtO]_2$ complex	82
III.24	The most stable geometry of [Cr(DCQX)(bpy)EtO] ₂ complex	84
III.25	The most stable geometry of $[Cr(DMQX)(bpy)EtO]_2$ complex	85
III.26	The ESR spectrum of [Cr(DCQX)(bpy)EtO] ₂ complex	90
III.27	The ESR spectrum of [Cr(DMQX)(bpy)EtO] ₂ complex	91
III.28	The TGA spectrum of [Cr(DCQX)(bpy)EtO] ₂ complex	95
III.29	The TGA spectrum of [Cr(DMQX)(bpy)EtO] ₂ complex	97
III.30	The UV-vis spectrum of [Cr(DCQX)(bpy)EtO] ₂ complex	99
III.31	The UV-vis spectrum of [Cr(DMQX)(bpy)EtO] ₂ complex	100
III.32	The mass spectrum of $[Ru(DCQX)(CO)_2(EtO)]_2$ complex	109
III.33	The IR spectrum of $[Ru(DCQX)(CO)_2(EtO)]_2$ complex	110
III.34	Suggested structure for the $[Ru(DCQX)(CO)_2(EtO)]_2$ complex	111
III.35	The isomers of [Ru(DCQX)(CO) ₂ (EtO)] ₂ complex	113
III.36	The most stable geometry of [Ru(DCQX)(CO) ₂ (EtO)] ₂ complex	116
III.37	The ESR spectrum of [Ru(DCQX)(CO) ₂ (EtO)] ₂ complex	119
III.38	The TGA spectrum of [Ru(DCQX)(CO) ₂ (EtO)] ₂ complex	122
III.39	The UV-vis spectrum of [Ru(DCQX)(CO) ₂ (EtO)] ₂ complex	124
III.40	The mass spectrum of $Ru_3(DMQX)_2(CO)_4(C_6H_6)_2$ complex	126
III.41	The IR spectrum of $Ru_3(DMQX)_2(CO)_4(C_6H_6)_2$ complex	128
III.42	Suggested structure for the $Ru_3(DMQX)_2(CO)_4(C6H6)_2$ complex	129
III.43	The most stable geometry of $Ru_3(DMQX)_2(CO)_4(C_6H_6)_2$ complex	131
III.44	The 1HNMR spectrum of Ru ₃ (DMQX) ₂ (CO) ₄ (C ₆ H ₆) ₂ complex	135
III.45	The TGA spectrum of Ru ₃ (DMQX) ₂ (CO) ₄ (C ₆ H ₆) ₂ complex	138
III.46	The UV-vis spectrum of Ru ₃ (DMQX) ₂ (CO) ₄ (C ₆ H ₆) ₂ complex	140

LIST OF TABLES

Tab. No.	Title	Page
	Chapter II	
II.1	The elemental analysis data of DCQX and DMQX ligands	20
II.2	The elemental analysis and magnetic moment data of molybdenum complexes	21
II.3	The elemental analysis and magnetic moment data of chromium complexes	22
II.4	The elemental analysis magnetic moment data of ruthenium complexes	23
	Chapter III	
III.1	Calculated results of the suggested structures of the $Mo_2(bpy)_2(DCQX)(CO)_3$ complex	43
III.2	Selected bond lengths (\mathring{A}) and angles (deg) for $Mo_2(bpy)_2(DCQX)(CO)_3$ complex obtained from parameterized PM3 geometry optimization.	45
III.3	Characteristic calculated and observed frequencies (cm $^{-1}$) for $Mo_2(bpy)_2(DCQX)(CO)_3$ complex	46
III.4	Thermal analysis data for $Mo_2(bpy)_2(DCQX)(CO)_3$ complex	50
III.5	Thermal analysis data for Mo ₂ (bpy) ₂ (DMQX)(CO) ₃ complex	61
III.6	Antimicrobial Activities of Mo(bpy)2(QX)(CO)3 complexes	67
III.7	Calculated results for the structures of the chromium complexes obtained from parameterized PM3 geometry optimization	83
III.8	Selected bond lengths (Å) and angles (deg) for the chromium complexes obtained from parameterized PM3 geometry optimization	86
III.9	Characteristic calculated and observed frequencies (cm ⁻¹) for the dinuclear chromium (III) complexes	87
III.10	Thermal analysis data for $[Cr(DCQX)(bpy)EtO]_2$ complex	94
III.11	Thermal analysis data for $[Cr(DMQX)(bpy)EtO]_2$ complex	96
III.12	The antimicrobial activities of DCQX and DMQX ligands and their dichromium complexes	104

Tab. No.	Title	Page
III.13	Calculated results for the structures of the[Ru(DCQX)-(CO) ₂ (EtO)] ₂ complex obtained from parameterized PM3 geometry optimization	114
III.14	Selected bond lengths (\mathring{A}) and angles (deg) for $[Ru(DCQX)(CO)_2(EtO)]_2$ complex obtained from parameterized PM3 geometry optimization	116
III.15	Characteristic calculated and observed vibrational frequencies (cm $^{-1}$) for the [Ru(DCQX)(CO) ₂ (EtO)] ₂ complex	117
III.16	Thermal analysis data for $[Ru(DCQX)(CO)_2(EtO)]_2$ complex	121
III.17	Calculated results for the structures of the $Ru_3(DMQX)_2$ - $(CO)_4(C_6H_6)_2$ complex obtained from parameterized PM3 geometry optimization	132
III.18	Characteristic calculated and observed vibrational frequencies (cm $^{-1}$) for the Ru ₃ (DMQX) ₂ (CO) ₄ (C ₆ H ₆) ₂ complex	133
III.19	Thermal analysis data for $Ru_3(DMQX)_2(CO)_4(C_6H_6)_2$ complex	137
III.20	The antimicrobial activities of DCQX and DMQX ligands and their ruthenium complexes	142

LIST OF SCHEME

Scheme No.		Page
I.1	General synthetic procedure for quinoxaline-2,3-dione derivatives	2
I.2	Coordination sites of quinoxaline-2,3-dione ligand	3
I.3	The possible coordination of <i>o</i> -quinone with transition metal carbonyls	3
I.4	The structure of $M(CO)_2(dhq)(DMSO)$ complex	4
III.1	Suggested structures of $Mo_2(bpy)_2(DCQX)(CO)_3$ complex.	37
III.2	Suggested mechanism for the formation of the dinuclear Cr(III) complexes.	72

LIST OF ABBREVIATION

Abbrev.	Full term
bpy	2,2` - bipyridine
¹ HNMR	Proton Nuclear Magnetic Resonance
DCQX	6,7-dichloroquinoxaline-2,3-dione
DMF	Dimethyl formamide
DMQX	6,7-dimethylquinoxaline-2,3-dione
DMSO	Dimethyl sulphoxide
EtOH	Ethyl alcohol
IR	Infra-red
PM3	Semiempirical methods
QX	Quinoxaline
THF	Tertahydrofuran
UV-Vis	Ultraviolet-Visible
μ_{effct}	Effective Magnetic Moment

SUMMARY

SUMMARY

Complexes of chromium, molybdenum and ruthenium with derivatives of quinoxaline ligand, namely 6,7-dichloroquino-xaline-2,3-dione (DCQX) and 6,7-dimethylquinoxaline-2,3-dione (DMQX) have been synthesized and characterized.

Two complexes (bisdipyridine-quinoxaline novel derivatives-tricarbonyl dimolybdenum (0) of the general formula $Mo_2(bpy)_2(QX)(CO)_3$, (where QX = DCQX or DMQX) and bpy= 2,2'-bipyridine), was synthesized in two steps starting with the reaction of Mo(CO)₆ with bpy then followed by the addition of OX ligand. Initial characterization based on the elemental and mass analyses has suggested three possible structures. In the three suggested structures the QX ligand bonded to two Mo(0) metal centers; to one Mo metal through its C=O functional groups and the other through the aromatic ring forming η^6 -arene type. In one of the suggested structures the QX ligand is bonded to (bpy)₂Mo and Mo(CO)₃ moieties, whereas in the other structures the QX ligand is bonded to Mo(bpy)(CO) and cis-(bpy)(CO)₂Mo or trans-(bpy)(CO)₂Mo moieties. The IR studies were useful in assigning the coordination modes of the ligands especially in the carbonyl region of the spectrum. ¹HNMR studies in DMSO-d₆ displayed typical patterns corresponding to cis-(bpy)₂M moiety. electronic absorption spectrum of the complexes revealed two bands assignable to $Mo(d_{\pi}) \rightarrow arene(\pi^*)$ and $Mo(d_{\pi}) \rightarrow bpy(\pi^*)$ MLCT transitions. The thermogravimetric analysis gave more insight into the composition and the thermal stability of the complexes. The structural and vibrational behaviors of the Mo₂(bpy)₂(DCQX)(CO)₃ complex have been elucidated using semiempirical parameterized PM3 method. The biological activity studies revealed higher antimicrobial inhibition of Mo₂(bpy)₂-(DCQX)(CO)₃ complex compared with the free DCQX ligand. Whereas, the Mo₂(bpy)₂(DMQX)(CO)₃ complex showed only higher antifungal inhibitory activities compared with the free DMQX ligand.

With chromium hexacarbonyl [Cr(CO)₆], two new diethoxo-bridged dinuclear Cr(III) complexes [Cr(QX)(bpy)EtO]₂ have been synthesized and characterized. The complexes were initially characterized on the basis of their elemental and mass analyses. The infrared studies were useful in assigning the coordination mode of the quinoxaline-2,3-dione ligand to the chromium metal. In addition, the presence of µ-ethoxo bridges was inferred from the characteristic vibrational bands in the IR spectra of both complexes. The structural and vibrational behaviors of both complexes have been elucidated using parameterized PM3 semiempirical method. The magnetic susceptibility measured at 298 K has indicated exchange interactions between the two Cr(III) centers. The observed effective magnetic moments have been correlated to the calculated Cr...Cr distances and Cr-O-Cr angles of Cr(OEt)₂Cr cores in both complexes. The ESR spectra have been recorded on powder samples at 298 K. The dominant quintet state