USESOME SOIL ANIMALS AS BIOINDICATORS OF SOIL HEALTH IRRIGATED WITH AGRICULTURAL DRAINAGE WATER

Submitted By

Hussein Ibrahim Hussein Omar

B.Sc.Agric.Sci.(Technology), Faculty of Agriculture, Ain ShamsUniversity, 2005

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences

Department of Environmental Agricultural Sciences Institute of Environmental Studies & Research Ain Shams University

2015

APPROVAL SHEET

USE SOME SOIL ANIMALS AS BIOINDICATORS OF SOIL HEALTH IRRIGATED WITH AGRICULTURAL DRAINAGE WATER

Submitted By Hussein Ibrahim Hussein Omar

B.Sc. Agric. Sci.(Technology), Faculty of Agriculture, Ain ShamsUniversity, 2005

This Thesis Towards a Master Degree In Environmental Sciences Has been Approved by:

Name Signature

1-Prof. Dr. Mohamed El Sayed E- Nennh Professor of Soil, Faculty of Agriculture, Ain Shams University

2-Prof. Dr. Abdel Kalik Mohamed Hussein Emeritus Chief Researcher (Soil Animals) Planet Protection Research Institute, Agricultural Research Center, Dokki, Giza

3-Dr. Ahmed Eid AbdEl Megeed
Assistant Prof. of Agricultural Animal, Plant Protection
Department
Faculty of Agriculture,
Ain Shams University

4-Prof. Dr. Hesham Ibrahim El Kassas, Prof. of soil and water Environment and Dean of Institute of Environmental Studies&Research, Ain Shams University

5-Prof. Dr. Darwish Sam Darwish, Professor of plant Nitration and Manager of Ammonia Project Institute of Land, Water and Environment Agricultural Research Center

2015

USE SOME SOIL ANIMALS AS BIOINDICATORS OF SOIL HEALTH IRRIGATED WITH AGRICULTURAL DRAINAGE WATER

Submitted By

Hussein Ibrahim Hussein Omar

B.Sc. Agric. Sci. (Technology). Faculty of Agriculture. Ain Shams University, 2005

A Thesis Submitted in Partial Fulfillment Of The Requirement for the Master Degree In Environmental Sciences Department of Environmental Agricultural Science

Under The Supervision of:

1-Prof. Dr. Hesham Ibrahim El Kassas,

Prof. of soil and water Environment and Dean of Institute of Environmental Studies &Research, Ain Shams University

2- Prof. Dr. Darwish Sam Darwish,

Professor of plant Nitration and Manager of Ammonia Project Institute of Land, Water and Environment Agricultural Research Center

3- Dr. Ahmed Eid AbdEl Megeed

Assistant Prof. of Agricultural Animal, Plant Protection Department Faculty of Agriculture, Ain Shams University

Acknowledgement

First My Unlimited Thanks to "Allah"

I wish to express my deep gratitude to Prof. Dr. Hesham Ibrahim El Kassas, Professor of soil and water Environment, Dean of Environmental Agricultural Science Department, Institute of Environmental Studies and Research, Ain Shams University for supervising the work, valuable discussion, suggesting guidance and continuous help and support to complete this study.

Sincere thanks and appreciation to Prof. Dr. Darwish Sam Darwish, Professor of plant Nitration, Institute of Land, Water and Environmental Studies, Agricultural Research Center for his technical advices, suggestions, and support to managing and supervising all site surveillances and soil analyses work through this study and offering time to make this study happened.

Special Thanks is due to Dr. Ahmed Eid Abdel Megeed Mahgoob, Associate professor of Agricultural Zoology, Faculty of Agriculture, Ain Shams University for all the support including and not limited to supervise all soli animals' investigations and determinations, Valuable Discussions, revision of the manuscript, endless support, patience and cooperation throughout propagation of this thesis.

Finally, I would like to express special thanks to all the members of Agricultural ZoologyDivision, Faculty of Agriculture, Ain Shams University, for their support and time to complete this research.

ABSTRACT

Shortage in Nile water resources resulted in using the unconventional sources of water such as drainage water. The current study was carried out to determine health of soil irrigated with agricultural drainage water using soil animals as bioindicators under different cultivation periods (0, 3, 8, 12 and 18 years), irrigated through dripping water systems and cultivated with Olive trees located at Kom Oshim area compared with a site irrigated with Nile water (basin irrigation) for more than 50 years ago and cultivated with alfaalfa crop located at Al Alaam area. The age of the Kom Oshim sites are: not cultivated (0years), three years, eight years, thirteen years and eighteen years. Irrigation water was mixed in a ratio of 3:1 (irrigation drainage water: Nile water) at the mixing station located on Kobry El Bayomy (North of Kom Oshim). Application of the mixed water for irrigation purposes since about eighteen years ago case changes in many of soil properties specially those are more affected by increase of soil salinity and alkalinity levels. Also Soil bulk density which showed a gradual increase with EC levels, while the decrease in drainable pores and soil permeability plays an important role for modifying the other physical properties in soil which leads to the degradation of soil aggregates. Samples were collected during 2012. Since soil health is strongly influenced by microbe-mediated processes, and function can be related to diversity, it is likely that microbial community structure will have the potential to serve as an early indication of soil degradation or soil improvement. Biomass, community structure, and specific functions of soil microorganisms appear to be of major importance for general soil functions and if detectable could serve as sensitive soil quality indicators.

Key Words: El Fayoum soil, Soil degradation, Agricultural drainage water, Soil fauna Soil Health.

Table of Contents		Page
1.	INTRODUCTION	1
2.	Review of literature	4
2.1.	Soil health indicators	5
2.2.	Irrigated water	8
2.3.	Soil physical and chemical properties	10
2.3.1.	Soil physical properties	10
2.3.2.	Soil chemical properties	11
2.3.2.1.	Soil salinity	11
2.3.2.2.	Soil alkalinity	11
2.3.2.3.	Organic matter and CaCO3 contents	12
2.3.2.4.	Macro elements content	13
2.3.2.5.	Trace elements or heavy metals content	13
2.4.	Invertebrates in the soil	14
2.4.1.	Microfauna	15
2.4.2.	Mesofauna	15
2.4.3.	Macrofauna	15
2.5.	Invertebrates as bio-indicator of soil health	16
2.5.1.	Nematodes	16
2.5.2.	Mites	19
3.	Materials and Methods	21
3.1.	Materials	21
3.2.	Source of irrigating water	24
3.3.	Soil and water samples	24
3.3.1	Soil samples	24
3.3.2	Water Samples	24
3.4.	Determination of soil physical and chemical	
	properties	25
3.4.1	Soil physical properties	25
3.4.2	Soil Chemical properties	25
3.5.	Determination of water chemical properties	26
3.6.	Extraction and Identification of the soil animals	26
3.6.1.	Extraction and Identification of the soil	
	nematodes	27
3.6.2.	Extraction and Identification of the soil mites	27
3.6.3.	Dominance of occurrence	27
4.	Results and Discussions	29

4.1.	Chemical composition of the used irrigation	20
4.1.1.	water resources The Nile water	30 30
4.1.2.	Mixed drainage water	34
4.2.	Effect of mixed drainage water on soil properties	36
4.2.1.	Effect of mixed water on soil physical properties	36
4.2.2.	Effect of mixed water on Soil bulk density and pore size distribution	36
4.2.3.	Effect of mixed water on soil chemical properties	39
4.2.3.1.	Soil salinity and pH	39
4.2.3.2.	Soil organic matter and CaCO ₃ s contents	42
4.2.3.3.	Macro, micro-nutrients and heavy metal	
	contents	42
4.3.	Soil animals survey in the studied soils	43
4.3.1.	Population density of soil nematodes	43
4.3.2.	Population density of soil mites	45
4.3.3.	Dominance of soil nematodes	47
4.3.4.	Dominance of soil mites	47
4.4.	The correlation between the irrigation water and	
	soil and soil animals	51
5	Summary and conclusion	55
6	References	64
7	Arabic Summary	70

List of Tables and Figures

Table	Content	Page
#		
1	Soil particle size distribution)%)	23
2	Chemical characteristics of the used irrigation	
	water during yearly quarters of 2012	31
3	Macro, micro-nutrients and heavy metal contents	
	(mg/L) of the used irrigation water at El Fayoum	
	Governorate during 2012	33
4	Some Chemical properties for the studied soils	38
5	Some Chemical properties for the studied soils	41
6	Density of soil nematodes collected from fields	
	cultivated at different ages planted with olive trees	
	irrigated with mixed agricultural drainage water	
	and Alfa-Alfa crop irrigated with Nile water at El	
	Fayoum Governorate during spring, summer and	
	autumn seasons of 2012	46
7		
	Dominance of soil nematodes collected from fields	
	cultivated at different ages planted with olive trees	
	irrigated with mixed agricultural drainage water	
	and Alfa-Alfa crop irrigated with Nile water at El	
	Fayoum Governorate during 2012	49
8	Dominance of soil mites collected from fields	
	cultivated at different ages planted with olive trees	
	irrigated with mixed Agricultural drainage water	
	and alfa-alfa crop irrigated with Nile water at El	
	Fayoum Governorate during 2012	50
9	Physical and chemical analysis of soil collected	
	from different sites (site 1 is virgin, site 2-5	
	irrigating with mixed agriculture drainage water	
	while site 6 irrigating with Nile water) at El	
	Fayoum Governorate	53

10	Dominance of soil animals collected from fields cultivated at different ages planted with olive trees irrigated with mixed Agricultural drainage water and alfa-alfa crop irrigated with Nile water at El Fayoum Governorate during 2012	5/
Fig (1)	Soil Health Indicator yramid	5 ²

1- Introduction:

Due to the limited fresh water resources and the increasing demand for land reclamation and agricultural development, Egypt is facing critical needs for reusing more amounts of water from the agricultural drainage system to be used for irrigation purposes. (El-Shakweer and Abdel-Hafeez, 2008).

Meanwhile,to reduce the flow from the main drainage system to the Mediterranean Sea in the North and/or to the outlets such as Qarun and Rayaan lakes in El Fayoum. Some of the old cultivated locations inside El Fayoum depression in addition to the newly reclaimed ones at the outer sides suffer from irrigation water deficiency, especially at the ends of the irrigation canals during summer season. This shortage in fresh irrigation water is partly balanced by the reuse of agricultural drainage water of some main drains. According to the national plan target in Egypt; the official drainage water reuse in all of the country, as targeted by the years 2007 and 2017 are 6591x10⁶ and 8631x10⁶ m³/year, respectively National Water Resources Plan (1999). Meanwhile, of which 396x10⁶ m³/year is targeted at 2007 and 2017 for El Fayoum Governorate, respectively (El-Shakwee and Abdel-Hafeez, 2008).

The safe limits of salinity, macro, micro-nutrients and heavy metals contents of drainage water reused for irrigation purposes are still questionable as well as the management of these waters for irrigation are critically still problematic. Mixing the Nile water with agricultural drainage water and reuse it for irrigation, needs to be revaluated year after year and studied. The study should be to the extended critical limits and precautions of the use of such resources. Aiming to detect the truth then recommend and initiate sucha programs to keep soils safe and healthy.

Soil organisms are important for the ecological sustenance of soil productivity, because they assist in litter breakdown and nitrogen mineralization in soil (lavalle *et al.*, 1997). As a result, their avoidance of contaminated soils and consequent absence in the soil will reduce long-term soil fertility(**Filser and Holscher, 1997**).

Soil organisms possess chemoreceptors highly sensitive to chemicals in the environment (**Edwardsand Bohlen**, 1996 and **Rombke and Schmidt**,1999). Soil organism avoidance behavior often occurs at concentrations equal to orlower than those affecting life-cycle parameters and can thus be used to predict an impending effect at individual and population levels (**Garcia**, 2004 and **Lukkari** *et al.*, 2005).

Neher (2001) indicated that the composition of nematode communities (plant-parasitic and free-living) may be used as bio-indicators of soil health or condition because composition correlates well with nitrogen cycling and decomposition.

The objective of the present work is to evaluate using the mixed irrigated water (agricultural draining watermixed with Nile water) on the soil health of different ages of Olive plantation comparing with no plantation (Arid land) and other plantation irrigated with Nile

water(inKom Oshim Tamia and El Elam , Sanouris at El Fayoum Governorate) and use the abundance of soil animal taxa as a bioindicator for the soil health. This study is focusing on the following points:

- 1- Irrigation water physical and chemical properties.
- 2- Soil physical and chemical properties.
- 3- Abundance of soil animal taxa such as nematodes and mites.

2- Review of Literature

Soil health indicators are a composite set of measurable physical, chemical and biological attributes which relate to functional soil processes and can be used to evaluate soil health status. It is realized that the former term (Soil Health) gives greater emphasis on soil biodiversity and ecological functions that make soil a dynamic living resource with capacity for self-organization (Allenet al., 2011).

Both Riley, (2001) and Dalal et al., (2003 a, b) Mentioned that Indicators, calculated values or estimated statistics relative to a threshold level are being increasingly used across biological, environmental, economic, social, institutional and political disciplines to assess current condition or trend of soil health.

Also all of **Doran and Zeiss**, (2000); **Doran**(2002) and **Dalal** et al., (2003 a, b) Said that Indicators may be used as an indirect measure of soil function, serving to assess soil quality or health and its direction of change with time, by linking functional relationships among measurable attributes and monitoring for sustainable land management, including environmental impacts.

Neher (2001) indicated Maturity and trophic diversity indices withstand statistical rigor better than do abundances, proportions, or ratios of trophic groups. Maturity indices also respond to a variety of land-

management practices, based largely on inferred life history characteristics of families. Similarity indices may be more usefulthan diversity indices because they reflect taxon composition. Improving existing indices or developing alternative indices refined by a greater understanding of the biology of key taxa may enhance the utility of nematodes as bio-indicators.

Allen et al. (2011)note thatelevated Co₂ concentration, increasing temperature, atmospheric N deposition and changes in total and seasonal distribution of rainfall and extreme events such as droughts and floods will impact on soil biological processes, C and N cycling, and consequently on soil structure and erosion events, nutrient availability and plant diseases, and hence on ecosystem functionality and agricultural productivity. However soil health indicators could be categorized as follows:

2.1. Soil health indicators:

<u>Biological:</u> soil organic matter, Respiration, soil biota biomass, Microbial Biomass C&N, Potentially mineralization N, Enzyme activity.

<u>Chemical:</u>pH; rate of acidification or alkalization, Electrical conductivity leachable salts adsorption and cationic exchange capacity Plant available N, P, K, S

Physical: Porosity, aggregate stability, infiltration, bulk density, soil and rooting depths, soil available water and distribution, soil surface cover.