

Development of Mix Design Guidelines for Concrete Produced Using Portland Cement Types Manufactured According to New Egyptian Standard Specifications

A Thesis

Submitted to the Faculty of Engineering
Ain Shams University for the partial Fulfillment
of the Requirement of M.Sc. Degree
In Civil Engineering

Prepared by

Eng. Mohamed Ali Elsayed Nower

B.Sc. in Civil Engineering, June 2010 Higher Institute of Engineering – El Shorouk Academy

Supervisors

Prof. Dr. Gouda Mohamed Ghanem

Professor of Properties and Strength of Materials Faculty of Engineering, Helwan University, Cairo, EGYPT

Dr. Hany Mohamed Elshafie

Associate Professor, Structural Engineering Department Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Dr. Ibrahim Abdel Latif Yousef

Assistant Professor, Structural Engineering Department Faculty of Engineering, Ain Shams University, Cairo, EGYPT

Development of Mix Design Guidelines for Concrete Produced Using Portland Cement Types Manufactured According to New Egyptian Standard Specifications

A Thesis For

The M.Sc. Degree in Civil Engineering (STRUCTURE ENGINEERING)

By

Eng. Mohamed Ali Elsayed Nower

B.Sc. in Civil Engineering, June 2010 Higher Institute of Engineering – El Shorouk Academy

THESIS APPROVAL

EXAMINERS COMMITTEE	SIGNATURE
Prof. Dr. Tarek Aly Elsayed	
Professor of Properties & Strength of Materials	
Faculty of Engineering, Helwan University	
Prof. Dr. Elsayed Abdelraouf Nasr	
Professor of Properties & Strength of Materials	
Faculty of Engineering, Ain Shams University	
Prof. Dr. Gouda Mohamed Ghanem	
Professor of Properties & Strength of Materials	
Faculty of Engineering – Helwan University	
Dean of the higher institute of Engineering at Elshorouk	
Dr. Hany Mohamed Elshafie	
Associate Professor, Structural Engineering Department,	
Faculty of Engineering, Ain Shams University	

Date: 5/1/2016

STATEMENT

This dissertation is submitted to Ain Shams University, Faculty of

Engineering for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author in the

department of Structure Engineering, Faculty of Engineering, Ain Shams

University, from 2013 to 2016.

No part of the thesis has been submitted for a degree or a qualification at any

other University or Institution.

The candidate confirms that the work submitted is his own and that

appropriate credit has been given where reference has been made to the work

of others.

Date: - 5/1 / 2016

Signature: - -----

Name: - MOHAMED ALI ELSAYED NOWER

ABSTRACT

Manufacturing of one ton of the Ordinary Portland Cement clinker (OPC) generates 900 kg of CO₂. The total volume of cement production per year is approximately 5% of global anthropogenic CO₂ production [15]. One of the alternatives to lower CO₂ emission is to use blended cement.

The main objective of the current study is to develop guidelines that can be used for designing concrete mixtures incorporating locally produced new cement types manufactured according to the new Egyptian standard specifications for cement and locally available aggregates typically used in producing concrete.

In the current study, 156 different concrete mixes were developed, designed, and carried out experimentally in order to develop design guidelines for the concrete mixtures having cements with different types (Ordinary Portland Cement (CEM I) and blended cement with different additions of limestone and slag (CEM II)), different classes regarding the compressive strength (52.5, 42.5, 32.5), different rates of strength gain (Normal (N) and Rapid (R)), and different production factories (sources), having coarse aggregates with different types typically used (gravel and crushed dolomite) and different maximum sizes (10, 20, and 40 mm), and having fine aggregate (sand) with different gradation zones (fine and coarse). In order to establish a water cement ratio - compressive strength relationships, the concrete mixes considered in the current study were divided into groups, each has the same concrete materials with different water cement ratios and the concrete compressive strength was evaluated by testing standard cubes in compression at ages of 3, 7, 28, 56, and 91 days where a total of 2340 standard cubes were tested. In all mixes, the water content needed to achieve the desired

consistency (measured by slump test) was estimated following the guidelines

given in the British Standard for concrete mix design.

One of the main outputs of the current study was establishing the water cement ratio — compressive strength relationships for concrete mixtures having different types of locally available concrete materials including new cement types and aggregates typically used in concrete. Moreover, it was verified that estimate of the water content needed to achieve the desired consistency for fresh concrete following the guidelines given in the British Standard for concrete mix design can be followed for concrete mixtures incorporating locally available cements and aggregates. Accordingly, design guidelines for the concrete mixtures; incorporating locally available concrete materials including new cement types and typically used aggregated; were successfully

developed.

Keywords: cement, concrete, compressive strength, workability, mix design concrete.

 \mathbf{v}

ACKNOWLEDGEMENT

I would like to thank ALLAH for his blessings all the way till I finished this research and throughout my life.

I wish to express my deep appreciation and gratitude to my supervisors for their great effort in solving all the problems during this research and for their valuable advice and encouragement,

Prof. Dr/ Gouda Mohamed Ghanem

Dr/ Hany Mohamed Elshafie

Dr/ Ibrahim Abdel Latif Yousef

In addition, I would like to thank my colleagues and the consulting engineering laboratories officials for their help and advice during this research.

Finally, but of great importance, I wish to express all the meanings of love, gratitude and appreciation to my family (my mother, my wife, my daughter, my sister and my brother) for their support and continuous prayers for me till finishing this thesis.

Mohamed Ali Nower

CONTENTS

Page
ABSTRACTiv
ACKNOWLEDGEMENT vi
CONTENTS vii
LIST OF FIGURES xi
LIST OF TABLESxvii
LIST OF SYMBOLS xix
LIST OF ABBREVIATIONS xix
1. INTRODUCTION
1.1 Background
1.2 Definition of the Problem
1.3 Objective and scope of the thesis
1.4 Thesis organization
2. LITERATURE REVIEW 4
2.1 Introduction
2.2 The Portland cement
2.3 Cement manufacturing process
2.4 Carbon dioxide emissions
2.5 Alternatives and improvements for the clinker production12
2.6 History of portland cement
2.7 History manufacture of portland cement

	2.8 Quality control applications in cement	19
	2.9 Constituents of cement	22
	2.9.1 Main constituents of cement	22
	2.9.2 Minor additional constituents	36
	2.10 Factors affecting concrete strength	38
	2.10.1 Compressive strength	38
	2.10.2 Workability	39
	2.10.3 Durability	39
	2.10.4 Maximum nominal size of aggregate	39
	2.10.5 Grading and type of aggregate	40
	2.10.6 Quality control	40
	2.11 Factors to be considered for mix design	40
	2.12 Historical and alternative systems of mix design	41
	2.12.1 British standard systems of mix design	42
	2.12.2 The ACI system	50
	2.12.3 Dewar particle interference and void filling	54
	2.12.4 RILEM technical committee	59
	2.13 Important findings from the literature reviews	60
3	B. EXPERIMENTAL PROGRAM	61
	3.1 Introduction	61
	3.2 Objective	61
	3.3 Experimental program	62

3.4 properties of concrete mixes test	65
3.4.1 Workability of fresh concrete	65
3.4.2 The compression test	66
3.5 The Properties of used Materials	66
3.5.1 Cement	67
3.5.2 Coarse aggregates	70
3.5.3 Fine aggregates	74
3.6 Experimental work	76
3.6.1 Molds	76
3.6.2 Concrete Casting and Curing.	76
3.6.3 Slump test	79
3.6.4 Compression testing procedure	80
4. EXPERIMENTAL RESULTS AND DISCUSSION	82
4.1 Introduction	82
4.2 Experimental results and discussion	83
4.2.1 Consistency of fresh concrete	83
4.2.2 Compressive strength at 28 day age	87
4.2.3 Compressive strength at 3 age	94
4.2.4 Compressive strength at 7 age	102
4.2.5 Compressive strength at 56 age.	109
4.2.6 Compressive strength at 91 age.	116
4.2.7 Effect of ages on the rate of strength	124

5. CONCLUSIONS AND RECOMMENDATIONS	128
5.1 Summary	128
5.2 Conclusions	129
5.3 Recommendations	132
REFERNCES	133
APPENDIX	141

LIST OF FIGURES

Page
Figure 2-1: Yearly cement production in Egypt
Figure 2-2: General cement production process diagram
Figure 2-3: Preheater tower and precalciner (Votorantim 2001)
Figure 2-4: Typical cement process mass balance
Figure 2-5: Phase diagram for the $CaO\text{-}SiO_2\text{-}Al_2O_3$ system (Neville 1981).18
Figure 2-6: Cumulative mass distribution of a Portland limestone cement with
a limestone content in an industrial ball mill (Schiller, Ellerbrock,
1992)29
Figure 2-7: Water demand and setting time of limestone cement paste31
Figure 2-8: Standard designation for cement types
Figure 2-9: Bulking of sand
Figure 2-10: Class A and B grading zones (BS 882:1944 Concreting Sands).
43
Figure 2-11: British sand grading zones (mean values)
Figure 2-12: Grading for 0.75 in (20 mm) maximum size aggregate46
Figure 2-12: Grading for 0.75 in (20 mm) maximum size aggregate46 Figure 2-13: Recommended proportions of fine aggregate according to
Figure 2-13: Recommended proportions of fine aggregate according to
Figure 2-13: Recommended proportions of fine aggregate according to percentage passing a 600 µm sieve
Figure 2-13: Recommended proportions of fine aggregate according to percentage passing a 600 µm sieve
Figure 2-13: Recommended proportions of fine aggregate according to percentage passing a 600 µm sieve
Figure 2-13: Recommended proportions of fine aggregate according to percentage passing a 600 µm sieve
Figure 2-13: Recommended proportions of fine aggregate according to percentage passing a 600 µm sieve
Figure 2-13: Recommended proportions of fine aggregate according to percentage passing a 600 µm sieve

Figure 3-4: Testing mechanical properties of mortar70
Figure 3-5: Grading crushed coarse aggregate with different maximum
aggregate size72
Figure 3-6: Grading uncrushed coarse aggregate with different maximum
aggregate sizes73
Figure 3-7: Drum mixer
Figure 3-8: Measuring temperature of fresh concrete77
Figure 3-9: Casting the standard cubes
Figure 3-10: Curing of concrete samples79
Figure 3-11: Slump test to measure consistency of fresh concrete79
Figure 3-12: Compressive strength test
Figure 3-13: Failure load80
Figure 3-14: Shape of failure sample
Figure 4-1: Relationship between free water content and slump for all concrete
mixtures considered in the current study85
Figure 4-2: Estimate for free water content needed to achieve the slump for
concrete mixes having gravel (uncrushed) as coarse aggregate with
maximum aggregate sizes of 10, 20 and 40 mm86
Figure 4-3: Estimate for free water content needed to achieve the slump for
concrete mixes having crushed dolomite as coarse aggregate with
maximum aggregate sizes of 10, 20 and 40 mm86
Figure 4-4: Water cement ratio – compressive strength $(w/c-fc)$ relationships
at 28 day age for concrete having coarse aggregate of gravel and
different cement types89
Figure 4-5: Water cement ratio – compressive strength $(w/c-fc)$ relationships
at 28 day age for concrete having coarse aggregate of crushed
dolomite and different cement types90

Figure 4-6: Comparison for water cement ratio – compressive strength (w/c -
fc) relationships at 28 day age for concrete having different types
of cements and coarse aggregates of (a) gravel (uncrushed) and (b)
crushed dolomite91
Figure 4-7: Proposed water cement ratio – compressive strength (w/c- fc)
relationships at 28 day age for concrete having cement classes
32.5, 42.5, and 52.5 and coarse aggregates of (a) gravel
(uncrushed) and (b) crushed dolomite92
Figure 4-8: Proposed log(water cement ratio) – compressive strength (Log(
w/c) -fc) relationships at 28 day age for concrete having cement
classes 32.5, 42.5, and 52.5 and coarse aggregates of (a) gravel
(uncrushed) and (b) crushed dolomite94
Figure 4-9: Water cement ratio – compressive strength (w/c- fc) relationships
at 3 days age for concrete having coarse aggregate of gravel and
different cement types
Figure 4-10: Water cement ratio – compressive strength $(w/c-fc)$ relationships
at 3 days age for concrete having coarse aggregate of crushed
dolomite and different cement types98
Figure 4-11: Comparison for water cement ratio – compressive strength (w/c -
fc) relationships at 3 day age for concrete having different types of
cements and coarse aggregates of (a) gravel (uncrushed) and (b)
crushed dolomite99
Figure 4-12: Proposed water cement ratio – compressive strength (w/c- fc)
relationships at 3 day age for concrete having cement classes 32.5,
42.5, and 52.5 and coarse aggregates of (a) gravel (uncrushed) and
(b) crushed dolomite

Figure 4-13: Proposed log(water cement ratio) – compressive strength (Log(
w/c) -fc) relationships at 3 days age for concrete having cement
classes 32.5, 42.5, and 52.5 and coarse aggregates of (a) gravel
(uncrushed) and (b) crushed dolomite102
Figure 4-14: Water cement ratio – compressive strength $(w/c - fc)$ relationships
at 7 day. age for concrete having coarse aggregate of gravel and
different cement types
Figure 4-15: Water cement ratio – compressive strength $(w/c - fc)$ relationships
at 7 day age for concrete having coarse aggregate of crushed
dolomite and different cement types105
Figure 4-16: Comparison for water cement ratio – compressive strength (w/c -
fc) relationships at 7 day age for concrete having different types of
cements and coarse aggregates of (a) gravel (uncrushed) and (b)
crushed dolomite106
Figure 4-17: Proposed water cement ratio – compressive strength (w/c-fc)
relationships at 7 day age for the different cement types considered
in the current study of (a) gravel (uncrushed) and (b) crushed
dolomite107
Figure 4-18: Proposed log(water cement ratio) – compressive strength (Log(
w/c) -fc) relationships at 7 day age for concrete having cement
classes 32.5, 42.5, and 52.5 and coarse aggregates of (a) gravel
(uncrushed) and (b) crushed dolomite108
Figure 4-19: Water cement ratio – compressive strength $(w/c-fc)$ relationships
at 56 day. age for concrete having coarse aggregate of gravel and
different cement types

Figure 4-20: Water cement ratio – compressive strength (w/c - fc) relationships
at 56 day age for concrete having coarse aggregate of crushed
dolomite and different cement types112
Figure 4-21: Comparison for water cement ratio – compressive strength (w/c -
fc) relationships at 56 day age for concrete having different types
of cements and coarse aggregates of (a) gravel (uncrushed) and (b)
crushed dolomite
Figure 4-22: Proposed water cement ratio – compressive strength (w/c-fc)
relationships at 56 day age for concrete having cement classes
32.5, 42.5, and 52.5 and coarse aggregates of (a) gravel
(uncrushed) and (b) crushed dolomite114
Figure 4-23: Proposed log(water cement ratio) – compressive strength (Log(
w/c) -fc) relationships at 56 day age for concrete having cement
classes 32.5, 42.5, and 52.5 and coarse aggregates of (a) gravel
(uncrushed) and (b) crushed dolomite116
Figure 4-24: Water cement ratio – compressive strength (w/c - fc) relationships
at 91day. age for concrete having coarse aggregate of gravel and
different cement types119
Figure 4-25: Water cement ratio – compressive strength (w/c - fc) relationships
at 91 day age for concrete having coarse aggregate of crushed
dolomite and different cement types120
Figure 4-26: Comparison for water cement ratio – compressive strength (w/c -
fc) relationships at 91 day age for concrete having different types
of cements and coarse aggregates of (a) gravel (uncrushed) and (b)
crushed dolomite
Figure 4-27: Proposed water cement ratio – compressive strength (w/c-fc)
relationships at 91 day age for concrete having cement classes