

Faculty of Commerce Statistics, Mathematics & Insurance Department

A Proposed Statistical Model to Forecast the Exchange Rate of the Egyptian Pound per U.S. Dollar

A thesis submitted in partial fulfillment of the requirements for the Master Degree in Applied Statistics

Submitted by

Hisham Mohamed Abdelaziz Saad

Demonstrator- Statistics, Mathematics & Insurance Department Faculty of Commerce, Ain Shams University

Under supervision of

Prof. Dr. Amr Ibrahim Abdelrahman Elatraby

Professor of Applied Statistics and Faculty Dean Faculty of Commerce, Ain Shams University

Prof. Dr. Ehab Ezz Eldin Nadim

Professor of Economics
Faculty of Commerce, Ain Shams University

Approval Sheet

Title of thesis: A Proposed Statistical Model to Forecast the

Exchange Rate of the Egyptian Pound per U.S. Dollar

Academic Degree: M.Sc. in Applied Statistics

Name of student: Hisham Mohamed Abdelaziz Saad

This thesis is submitted in partial fulfillment of the requirements for the Master Degree in Applied Statistics has been approved by:

Examination Committee

1- Professor Dr. Mustafa Galal Mustafa Chairman

Professor of Applied Statistics Faculty of Commerce Ain Shams University

2- Professor Dr. Amr Ibrahim Abdelrahman Elatraby

Professor of Applied Statistics and Faculty Dean Faculty of Commerce

Ain Shams University

3- Professor Dr. Ehab Ezz Eldin Nadim Co-supervisor

Professor of Economics Faculty of Commerce Ain Shams University

4- Mr. Mohamed Mahmoud Eletreby

Member

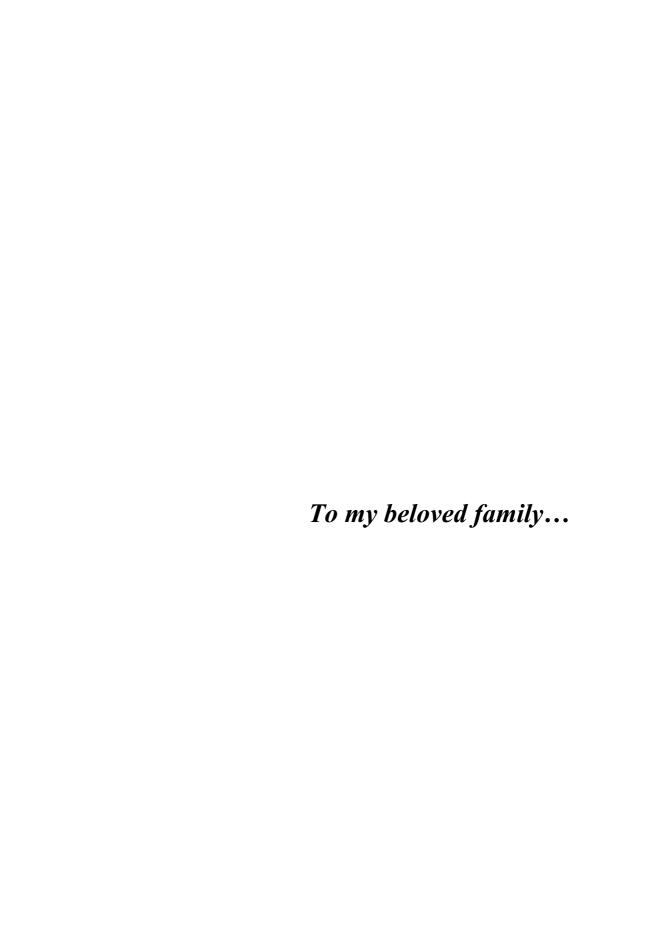
Supervisor

Chairman of Banque Misr

Date of dissertation defense / / Approval date / /

Acknowledgment

All the praises and acclamations for Almighty **ALLAH**, The Most Merciful and Compassionate, Whose blessings enabled me to pursue and complete this research.


I sincerely acknowledge and express my deep gratitude to **Prof. Dr. Mustafa Galal Mustafa** for his valuable time, patience and professionalism. I am very thankful that he made me learn statistics in a professional way during my college years and in the premaster's stage.

I owe my thanks and appreciation to my respected supervisor **Prof. Dr. Amr Ibrahim Abdelrahman Elatraby** for his continuous support, valuable advices and encouragements. Without his guidance and assistance I could never have been able to complete my thesis successfully.

My gratitude goes also to **Prof. Dr. Ehab Ezz-Aldin Nadim** who made me learn economics in a simple and proficient way. I also would like to thank him for his generous support in the economic aspects of this work.

My sincere thanks are extended to **Mr. Mohamed Mahmoud Eletreby** for his valuable time and efforts in reviewing this research work and for accepting to be a member of the examination committee.

Finally, I must mention that it was mainly due to my family's moral support and continuous encouragements during my entire academic career which enabled me to complete this academic work. I am grateful to my mother, wife, sons and brothers.

ABSTRACT

Hisham Mohamed Abdelaziz Saad

A Proposed Statistical Model to Forecast the Exchange Rate of the Egyptian Pound per U.S. Dollar

Master of Applied Statistics Ain Shams University- Faculty of Commerce Statistics, Mathematics & Insurance Department

Forecasting of exchange rates has been an extremely challenging and important task for both academic and business researchers. These forecasts are essential for central banks, corporations, investors and even individuals to hedge exchange rate risks and to generate profits. This study aims to propose a statistical model to forecast the exchange rate of the Egyptian pound per U.S dollar (LE/\$US) for both short-term and long-term periods. Several economic variables that were expected to have an impact on the LE/\$US exchange rate were investigated. The study covered the period from February, 2003 to July, 2014 using monthly and daily LE/\$US exchange rates.

Different statistical models were applied, for short-term forecasting, univariate autoregressive integrated moving average (ARIMA) model together with a hybrid model that combines the ARIMA model with the generalized autoregressive conditional heteroscedasticity (GARCH) model were applied using the daily exchange rate series. For long-term forecasting, univariate ARIMA model together with a dynamic regression model that combines the multiple regression analysis with the ARIMA model were applied using the monthly exchange rate series. Several

economic variables were included in the dynamic regression model. The forecasting performance of all models estimated were evaluated using different forecasting accuracy measures that were based on both in-sample and out-of-sample forecasts.

The results showed that for the short-term forecasting model, the hybrid ARIMA-GARCH model outperformed the univariate ARIMA model in terms of forecasting accuracy. As for the long-term forecasting model, the dynamic regression model outperformed the univariate ARIMA model.

These models may aid the Egyptian authorities to deal with the disequilibrium in the foreign exchange market. Policy makers, corporations, banks, individuals and foreign currency dealers, may also use these models to generate forecasts of the LE/\$US exchange rate and to hedge against exchange rate risk.

Keywords: Exchange rate forecasting, Autoregressive integrated moving average, ARIMA, Dynamic regression, Regression with ARIMA errors, Generalized autoregressive conditional heteroscedasticity, GARCH, Hybrid ARIMA-GARCH, Technical analysis, Fundamental analysis.

Table of Contents

List of Tables III
List of FiguresV
List of AbbreviationsVII
Chapter One: Introduction
1.1 Back ground1
1.2 Nature of the problem3
1.3 Importance of study4
1.4 Objectives of study6
1.5 Limitations of study7
1.6 Literature review7
1.7 Data sources
1.8 Methodology
1.9 Variables of the model17
1.10 Organization of study20
Chapter Two: Foreign exchange market and history of the exchange rate policy in Egypt
2.1 Introduction to the foreign exchange market22
2.2 Exchange rate systems24
2.3 Determinants of exchange rates26
2.4 Theories of exchange rates
2.5 Brief history of the exchange rate policies in Egypt31
Chapter Three: Statistical models
3.1 Auto Regressive Integrated Moving Average (ARIMA) model 37

3.2 Regression with ARIMA errors	50
3.3 ARCH and GARCH models	55
Chapter Four: Statistical analysis for the monthly exchange rate	series
4.1 Introduction	65
4.2 Univariate ARIMA model using monthly data	65
4.3 Regression model with ARIMA errors	79
Chapter Five: Statistical analysis for the daily exchange rate seri	es
5.1 Introduction	88
5.2 Univariate ARIMA model using daily data	88
5.3 Hybrid ARIMA-GARCH model	100
Chapter Six: Results, Conclusions and Recommendations	
6.1 Introduction	108
6.2 Results and conclusions of the study	108
6.3 Recommendations	112
6.4 Suggested future work	113
References	115

List of Tables

Table 4-1 Descriptive statistics for the monthly LE/\$US exchange rate series66
Table 4-2 Descriptive statistics for the twice differenced exchange rate series70
Table 4-3 Information criterion for the models identified
Table 4-4 Results of the ARIMA (1,2,1) fitted model
Table 4-5 Results of the Ljung-Box (Q) test for autocorrelation of the residuals75 $$
Table 4-6 Results of the Ljung-Box (Q) test for the squared residuals along with Engle's
LM ARCH test76
Table 4-7 RMSE, MAE and MAPE for the ARIMA (1,2,1) model78
Table 4-8 KPSS test for stationarity for the differenced explanatory variables79
Table 4-9 Variance inflation factors of the explanatory variables79
Table 4-10 Results of the fitted regression model with ARIMA (1,2,1) errors80
Table 4-11 Results of the Ljung-Box (Q) test for autocorrelation of the residuals83
Table 4-12 Results of the Ljung-Box (Q) test for the squared residuals along with Engle's
LM ARCH test84
Table 4-13 RMSE, MAE and MAPE for the regression model with ARIMA errors 87
Table 5-1 Descriptive statistics for the daily LE/\$US exchange rate series89
Table 5-2 Information criterion for the models identified94
Table 5-3 Results of the ARIMA (5,2,1) fitted model94
Table 5-4 Results of the Ljung-Box (Q) test for autocorrelation of the residuals97
Table 5-5 Results of the Ljung-Box (Q) test for the squared residuals along with Engle's
LM ARCH test98
Table 5-6 RMSE, MAE and MAPE for the ARIMA (5,2,1) model100
Table 5-7 AIC and BIC values for GARCH models with different conditional
distributions
Table 5-8 Joint estimation results for the ARIMA (5,2,1)-GARCH (2,0) model with t
distributed errors
Table 5-9 Results of the Ljung-Box (Q) test for the standardized residuals and the squared
standardized residuals along with Engle's LM ARCH test105
Table 5-10 RMSE, MAE and MAPE for the ARIMA (5,2,1)-GARCH(2,0) model107

Table 6-1 Comparison of the forecasting performance between the univariate	ARIMA
(1,2,1) model and the regression model with ARIMA (1,2,1) errors	109
Table 6-2 Comparison of the forecasting performance between the univariate	ARIMA
(5.2.1) model and the hybrid ARIMA(5.2.1)-GARCH(2.0) model	111

List of Figures

Figure 1-1 Average LE/\$US exchange rate from January 2000 to July 20153
$Figure\ 21\ Foreign\ exchange\ market\ turnover\ for\ the\ five\ most\ traded\ currencies\ in\ April,$
2013
Figure 2-2 Yearly average LE/\$US exchange rate from 1960 to July, 2014. The horizontal
lines distinguishes the three periods
Figure 3-1 The ARIMA procedure
Figure 4-1 Monthly average LE/\$US exchange rate from February 2003 to July 2014 .66 $$
Figure 4-2 Monthly average LE/ $\$$ US exchange rate after treating the series from outliers
67
Figure 4-3 The sample ACF and the sample PACF for the monthly average LE/ $\$$ US
exchange rate
Figure 4-4 The sample ACF and the sample PACF for the once and twice (second)
differenced series
Figure 4-5 Twice differenced LE/ $\$$ US series, horizontal line represents the mean of the
series
Figure 4-6 Residuals of the ARIMA $(1,2,1)$ model along with the ACF and PACF for the
residuals
Figure 4-7 ACF and PACF for the squared residuals
Figure 4-8 Normal Q-Q plot for the residuals of the fitted ARIMA (1,2,1) model. The
diagonal line represents the z-scores of normal distribution
Figure 4-9 Forecasts from the ARIMA (1,2,1) model for 12 months ahead77
Figure 4-10 Residuals of the regression model with ARIMA (1,2,1) errors along with the
ACF and PACF for the residuals
Figure 4-11 ACF and PACF for the squared residuals
Figure 4-12 Normal Q-Q plot for the residuals of the fitted regression model with ARIMA
(1,2,1) errors. The diagonal line represents the z-scores of normal distribution85
Figure 4-13 Forecasts from the regression model with ARIMA (1,2,1) errors for 12
months ahead86
Figure 5-1 Daily LE/\$US exchange rate series from 1/2/2003 to 31/7/201489
Figure 5-2 Daily LE/\$US exchange rate after treating the series from outliers90
Figure 5-3 Daily LE/\$US transformed series with lambda=-191

Figure 5-4 The sample ACF and the sample PACF for the transformed series92
Figure 5-5 The sample ACF and the sample PACF for the once and twice differenced
series93
Figure 5-6 Twice differenced transformed series. The horizontal line represents the mean
of the series93
Figure 5-7 residuals from the ARIMA (5,2,1) fitted model96
Figure 5-8 ACF and PACF for the residuals of the ARIMA (5,2,1) model fitted97
Figure 5-9 ACF and PACF for the squared residuals of the ARIMA (5,2,1) model fitted
98
Figure 5-10 Normal Q-Q plot for the residuals of the fitted ARIMA (5,2 1) model. The
diagonal line represents the z-scores of normal distribution
Figure 5-11 Standardized residuals of the ARIMA(5,2,1)-GARCH(2,0) model fitted. 103
Figure 5-12 ACF for standardized residuals and squared standardized residuals104
Figure 5-13 Empirical density and QQ-plot based on the t-distribution for the standardized
residuals
Figure 5-14 Daily LE/\$US exchange rate from 1/2/2003 to 31/7/2014 together with the
fitted values from the model and 10 step ahead forecasts

List of Abbreviations

ACF	Autocorrelation Function
ADF	Augmented Dickey-Fuller test
AIC	Akaike Information Criterion
AICc	Corrected Akaike Information Criterion
ANN	Artificial Neural Network
ANOVA	Analysis of Variance
AR	Autoregressive
ARCH	Autoregressive Conditional Heteroscedasticity
ARIMA	Autoregressive Integrated Moving Average
ARMA	Autoregressive Moving Average
BIC	Bayesian Information Criterion
BIS	Bank of International Settlements
ВОР	Balance of Payments
CBE	Central Bank of Egypt
CPI	Consumer Price Index
DM test	Diebold and Mariano test
ER	Exchange Rate
FDI	Foreign Direct Investment
GARCH	Generalized Autoregressive Conditional
	Heteroscedasticity
GDP	Gross Domestic Product
IMF	International Monetary Fund
KPSS test	Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test
LM	Lagrange Multiplier
MA	Moving Average

MAE	Mean Absolute Error
MAPE	Mean Absolute Prediction Error
MSPE	Mean Squared Prediction Error
OLS	Ordinary Least Squares
PACF	Partial Autocorrelation Function
PP test	Phillips Peron test
PPP	Purchasing Power Parity
Q-Q plot	Quantile-Quantile plot
RMSE	Root Mean Squared Error
S.E	Standard Error
T-GARCH	Threshold Generalized Autoregressive Conditional
	Heteroscedasticity
VAR	Vector Autoregressive
VEC	Vector Error Correction
VIF	Variance Inflation Factor

Chapter One: Introduction

1.1 Back ground

Since the development of foreign exchange market (currency market, Forex or FX), understanding and forecasting exchange rate movements has been an extremely challenging and important task for both academic and business researchers especially after the abolishment of fixed exchange rate system in most countries. With market globalization, multinational firms are in constant need of buying, selling or even borrowing foreign currency, thus exposing to exchange rate risk becomes an ever-growing challenge to more and more firms in the modern world (Cai & Qi, 2010). Profits or losses can become more dependent on exchange rate fluctuations than on the inherent profitability of the underlying trade in goods and services (Coyle, 2013).

In the past, foreign exchange market was limited to meet the demands of exporters and importers of goods and services but nowadays, these operations diversified to meet the demands of governments, financial sectors, companies, banks, investors and even individuals.

Exchange rate can be defined as the number of units of local currency paid to obtain one unit of foreign currency or in other words "the price of one money in terms of another" (Husted & Melvin, 2004). Every country has its own currency to be used in domestic payments, however, it appears necessary to use foreign currencies when commercial or financial relationships occur between different countries.

A major challenge in forecasting the movements of exchange rates is that the exchange rates varies and fluctuates continuously and are affected by