Role of Natural killer T Cells in Obesity-Related Liver Disease

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical and Chemical Pathology

$\mathcal{B}y$

Heba Nabil Mohamed Abdel Hamid

M.B.,B.Ch. Zagazig University

Supervised By Professor/Aisha Yassin Abdel Ghaffar

Professor of Clinical and Chemical Pathology Faculty of Medicine-Ain Shams University

Professor/Randa Abdel Wahab Reda Mabrouk

Professor of Clinical and Chemical Pathology Faculty of Medicine-Ain Shams University

Doctor/Rania Hamdy El-Kabarity

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine-Ain Shams University

> Faculty of Medicine Ain Shams University 2012

سورة البقرة الآية: ٣٢

I would like to express my profound gratitude to **Professor/ Aisha Yassin Abdel-Ghaffar**, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University for her most valuable advises and support all through the whole work and for dedicating much of her precious time to accomplish this work.

I am also grateful to **Professor/ Randa Abdel-Wahab Reda Mabrouk,** Professor of Clinical and Chemical Pathology,
Faculty of Medicine Ain Shams University for her unique
effort, considerable help, assistance and knowledge she offered
me through out the performance of this work.

My special thanks and deep obligation to **Doctor/Rania**Hamdy El Kabarity, Assistant Professor of Clinical and
Chemical Pathology, Faculty of Medicine Ain Shams
University for her continuous encouragement and supervision
and kind care.

Last but not least, I would like to express my deep thanks and gratitude to every one who supported and helped me to finish this work.

Meha Nabil Mohamed

Contents

Subjects	Page
≥ List of Abbreviations	I
≥ List of Tables	VI
≥ List of Figures	V
> Introduction	1
≥ Aim of the work	3
Review of literature	
• Chapter (1): Nonalcoholic fatty liver disease	4
• Chapter (2): NKT cells	41
• Chapter (3): Role of NKT cells in obesity rel	lated liver
disease	60
Subjects And Methods	69
> Results	78
> Discussion	97
™ Conclusion & Recommendation 1	08-109
> Summary	110
> References	113
△ Arabic summary	

List of Abbreviations

ACAID anterior chamber-associated immune deviation alpha-galactosylceramide r-GalCer alcoholic liver disease **ALD ALT** Alanine aminotransferase activator protein-1 AP-1 antigen-presenting cells **APCs** apolipoprotein B apo B apolipoprotein C3 APOC3 activated Partial Thromboplastin Time **aPTT** Aspartate aminotransferase **AST** area under carve **AUC** body-mass index **BMI** choline-deficient ethionine-supplemented diet **CDD** CD Cluster of differentiation C reactive protein **CRP** confidence interval CI computerized tomography CT **CTL** cytotoxic T lymphocyte dendritic cells **DCs** experimental allergic encephalomyelitis **EAE EDTA** Ethylene Diamine tetra-acetic acid Enzyme Linked Immunosorbent Assay **ELISA** Fasting blood sugar **FBS** fatty acids **FAs** Free fatty acids **FFAs** fluorescine isothiocyanate **FITC** ferroprotein-1 **FP-1** guanosine adenosine thymidine adenosine 3 **GATA3** Glucose transporter type-4 **GLUT-4** glycosphingolipid **GSL** hepatocellular carcinoma **HCC** Hepatitis C virus **HCV** High-density lipoproteins HDL

🕏 List of Abbreviations 🗷

HFE haemochromatosis gene

HIV human immune deficiency virus

¹**H MRS** Proton Magnetic Resonance Spectroscopy

HOMA-IR Homeostasis model assessment of insulin resistance

HRP horse radish peroxidaseHS highly-significant

hs-CRP High sensitivity C-Reactive Protein

IFG impaired fasting Glucose

IFN-x Interferon Gama

iGb3 Isoglobotrihexosylceramide

IL Interleukin

IOR interquartile range

iNKT invariant Natural killer T

KCs kuffer cells

LDL low-density lipoproteins

LFC liver fat content lipopoly saccharide likelihood ratio

MoAbmonoclonal antibodiesMHCMajor histocompatibilitymRNAmessenger ribonucleic acid

MRS Magnetic Resonance Spectroscopy

MTP microsomal triglyceride transfer protein neuronal apoptosis inhibitory protein 2

NAFLD nonalcoholic fatty liver disease **NASH** nonalcoholic steatohepatitis

NF-kB nuclear factor kB

NIDDM Non-insulin dependent diabetes mellitus

NK natural killer

NKT cell Natural killer T cell non-significant

ORLD obesity related liver disease PBS Phosphate buffered saline

P C personal computer PE phycoerythrin

PPARs peroxisome proliferator-activated receptors

Prothrombin Time PT RNS reactive nitrogen species receiver-operating characteristic **ROC** reactive oxygen species ROS significant S **SPSS** Statistical Package for Special Sciences sterol regulatory element binding protein **SREBP** Student's t-test t T-box expressed in T cells T-bet T cell receptor **TCR** type 2 diabetes mellitus T2DM transferrin saturation **TFS** TGF-Tumor Growth Factor Beta Th T helper TLR toll like receptors tetramethylbenzidine **TMB** Tumor Necrosis Factor Alpha TNF-r TNF-related apoptosis-inducing ligand **TRAIL** un-coupling protein C UCP2 very low-density lipoproteins **VLDL** Chi-square test

List of Tables

Table No.	Title	page
Table (1)	Evaluation of suspected NAFLD	25
Table (2)	Difference between groups regarding	79
	age, sex, weight and BMI	
Table (3)	Difference between groups regarding	81
	liver function	
Table (4)	Difference between groups regarding	83
	lipid	
Table (5)	Difference between groups regarding	84
	FBS, fasting serum insulin and HOMA-	
	IR	
Table (6)	Difference between groups regarding	85
	high-sensitivity CRP and NKT cells	
Table (7)	Correlation between each of high-	88-89
	sensitivity CRP and percentage of NKT	
	cells, and other variables among group I	
	[ORLD group]	
Table (8)	Area under ROC curves for association	94
	between variables and ORLD	
Table (9)	Diagnostic accuracy of measured	95
	variables in ORLD	

List of Figures

Figure No.	Title	page
Fig. (1)	Schematic diagram showing relationship	10
	between fatty liver disease and metabolic	
	syndrome.	
Fig. (2)	The two hit hypothesis.	11
Fig. (3)	The gut as a central player in development	19
	of systemic inflammation, metabolic	
	syndrome and NAFLD.	
Fig. (4)	Development of nonalcoholic hepatic	21
	steatosis.	
Fig. (5)	Possible interactions between NKT cells	49
	and DCs.	
Fig. (6)	. Role of intrahepatic NKT cells in the	62
	progression of NAFLD at the early (a) and	
	the late stage (b).	
Fig. (7)	Immunoregulatory functions of hepatic	65
	NKT cells	
Fig. (8)	Box-Plot chart showing difference between	86
	groups regarding high-sensitivity CRP.	
Fig. (9)	Box-Plot chart showing difference between	87
	groups regarding NKT cells.	
Fig. (10)	Correlation between NKT Cells % and FBS	89
	among group I [ORLD group].	

🕃 List of Figures 🗷

Figure No.	Title	page
Fig. (11)	ROC curve for association between NKT	90
	cells % and ORLD.	
Fig. (12)	ROC Curve for Association between h-	91
	CRP and ORLD.	
Fig. (13)	ROC curve for association between FBS,	92
	fasting insulin and HOMA-IR and ORLD.	
Fig. (14)	ROC curve for association between lipid	93
	profile.	
Fig. (15)	Flowcytometry of healthy control subject.	96
Fig. (16)	Flowcytometry of patient with NAFLD.	96

Introduction

Liver involvement in obesity falls within a clinical entity called nonalcoholic fatty liver disease (NAFLD), characterized by macrovesicular liver steatosis in absence of significant alcohol consumption. Potential steps involved in the pathogenesis of NAFLD include abnormalities of lipid metabolism, production of reactive oxygen species, increased hepatic lipid peroxidation, activated stellate cells, and abnormal patterns of cytokine production. According to the multihit theory, the first hit involves accumulation of fat in the hepatic parenchyma, probably due to insulin resistance commonly observed in patients with NAFLD. Later, leptin has been involved in the pathogenesis of NAFLD (*Iorio et al.*, 2006).

NAFLD affects 10–20% of the population in developed countries and is increasing in prevalence with the rise of diabetes and obesity. The molecular mechanisms underlying the pathogenesis of NAFLD remain largely unknown. However further studies suggest that natural killer T (NKT) cells may have a protective effect in animal models of NAFLD (*Li. et al.*, 2005).

High-fat diet consumption, and feeding on a sucrose diet cause NAFLD associated with reduction of hepatic NKT cells. This reduction may be a result of reduced hepatic cluster of differentiation 1d (CD1d) expression and increased NKT apoptosis caused by reduced production of nor epinephrine and interleukin-15 (IL-15) (*Gao et al.*, 2009).

Depletion of NKT cells promotes proinflammatory polarization of hepatic cytokine production that sensitizes the liver to lipopoly saccharide (LPS) toxicity, whileas elevation of hepatic NKT cells by probiotic treatment or adoptive transfer improved NAFLD (*Ma et al.*, 2008).

However, findings from clinical studies of NKT cells in patients with NAFLD have been controversial. It was reported that peripheral NKT cells are depleted in patients with NAFLD and correlated negatively with disease severity (*Xu et al.*, 2007). On the other hand, *Tajiri et al.* (2009) reported that hepatic NKT cells are increased in NAFLD and may promote liver injury.

Aim of the Work

The aim of the present study is to estimate the percentages of NKT cells in the peripheral blood of patients with obesity related liver disease and evaluate its role in the disease pathogenesis.

Nonalcoholic Fatty Liver Disease

Introduction:

Liver involvement in obesity falls within a clinical entity called NAFLD, characterized by macrovesicular liver steatosis in absence of significant alcohol consumption. Potential steps involved in the pathogenesis of NAFLD include abnormalities of lipid metabolism, production of reactive oxygen species, increased hepatic lipid peroxidation, activated stellate cells, and abnormal patterns of cytokine production. According to the multihit theory, the first hit involves accumulation of fat in the hepatic parenchyma, probably due to insulin resistance commonly observed in patients with NAFLD. Later, leptin has been involved in the pathogenesis of NAFLD (Iorio et al., 2006). Low adiponectin levels and increased leptin, as usually observed in obese patients, may predispose to ectopic fat deposition in liver (Rossi et al., 2011). People who carry the variants of a gene for apolipoprotein C3 (APOC3), which produces an enzyme needed for proper fat metabolism, have a higher incidence of both NAFLD and insulin resistance (Elaine and Moore, 2012).

The condition of liver lipid accumulation, resembling alcohol-induced injury but occurring in patients who do not use alcohol or maximum 2-3 glasses/day, is called NAFLD (*Neuschwander-Tetri and Caldwell*, 2003). Several often

incorrectly used synonyms for the same disease are diabetes hepatitis, fatty-liver hepatitis, alcohol-like liver disease, Laennec's disease and nonalcoholic steatohepatitis (NASH) (Angulo, 2002). The term nonalcoholic is used because NAFLD and NASH occur in individuals who do not consume excessive amounts of alcohol. Yet, in many respects, the histological picture of NAFLD is similar to what can be seen in liver disease that is due to excessive intake of alcohol. However, the clinical circumstances in NAFLD and NASH are very different from those in alcoholic liver disease (ALD) (Elaine and Moore, 2012). NAFLD disease is an increasingly recognized condition, fuelled by the increasing prevalence of obesity, and is very rapidly becoming a major health problem world-wide (Angulo, 2007 and Browning et al., 2004).

NAFLD in the early stage is usually asymptomatic (*Adams* and Lindor, 2007), but it is by itself a risk factor for hepatocellular carcinoma (HCC) and is also part of the natural (progressive) history of nonalcoholic steatohepatitis (NASH), which can lead to cryptogenic fibrosis (*Bugianesi*, 2007). Due to this risk of progression to more severe liver disease through the consequences of its fibro-inflammatory risk, NAFLD has been predicted to be the major cause of liver transplantation in 2020 (*Charlton*, 2004) stressing the great need for early detection of the disease.