Analytical Studies for Antidoping Purposes

Thesis

Presented for the partial fulfillment of the degree of *PhD in Pharmaceutical Sciences (Pharmaceutical Analytical Chemistry)*

By

Naglaa Ibrahim Sayed

Master in Pharmaceutical Sciences (Pharmaceutical Analytical Chemistry)
2012

Under the Supervision of

Prof. Dr. Laila El-Sayed Abd El-Fattah

Professor of Analytical Chemistry, Faculty of Pharmacy, Cairo university and Vice Dean for the postgraduate studies affairs and scientific research Faculty of Pharmacy

Misr University for science and technology

Prof. Dr. Amira Mabrouk El-Kosasy

Professor of Pharmaceutical Analytical Chemistry and Vice Dean for educational and students affairs Faculty of Pharmacy Ain Shams University

Dr. Omar Abdel-Aziz Ali Ghonim

Associate Professor of Pharmaceutical Analytical Chemistry and Head of the department Faculty of Pharmacy Ain Shams University

Faculty of pharmacy Ain Shams university 2015 ولسوويعظيم كالبر فترجي

Acknowledgment

All thanks and gratitude are to my lord Allah, who has given me the strength and will to finish this work. Words and thanks will never suffice to praise Allah for his mercy, blessings and guidance that lead me through the tough times.

It's my great pleasure to express my sincere thanks and grateful appreciation to *Prof. Dr. Laila El-Sayed Abd El-Fattah*, Professor of Analytical Chemistry, Faculty of Pharmacy, Cairo university and Vice Dean for the postgraduate studies affairs and scientific research, Faculty of Pharmacy, Misr University for science and technology, for her valuable suggestions, expert supervision, constructive comments and guidance during the supervision of this work. I will always be indebted to her kindness and continuous encouragement that had made continuation in the hard times attainable.

I would like to express my deepest gratitude and sincere appreciation to *Prof. Dr. Amira Mabrouk El-Kosasy*, Professor of Pharmaceutical Analytical Chemistry and Vice Dean for the educational and students affairs, Faculty of Pharmacy, Ain Shams University, for suggesting the point, her kind and expert supervision, patience, unlimited support, generous assistance, and for the extensive effort, time and energy.

My profound thanks are to *Dr. Omar Abdel-Aziz*, Associate Professor of Pharmaceutical Analytical Chemistry and Head of the department, Faculty of Pharmacy, Ain Shams University, who was always supporting me with constructive advice, persistent encouragement and valuable assistance throughout the whole work.

I am very grateful to my parents, brother, sister and my dear husband for standing by me in every step, their continuous support and encouragement all the way through and giving me all the strength and faith more than I needed.

Finally my sincere appreciation and thanks go to all my colleagues and staff members in Pharmaceutical Analytical Chemistry Department, for their friendly cooperation and constant support.

List of contents

Part I: General Introduction on doping

I.1. History	2
I.2. Doping in sports	2
I.3. World Anti-Doping Agency (WADA)	
I.4.THE 2015 PROHIBITED LIST WORLD ANTI-DOPING CODE	4
Part II: Literature Review	
II.1. General profile of the selected drugs	12
II.2.Pharmacology and use in doping	18
II.2.1. Narcotics	18
II.2.2. Anabolic steroid	18
II.2.3. Corticosteroids	19
II.2.4. Diuretics	20
II.2.5. Stimulants	20
II.2.6. β blocker	20
II.2.7. β agonist	20
II.3. Pharmacokinetics	21
II.3.1. Narcotics	21
II.3.2.Anabolic steroid	22
II.3.3.Corticosteroids	22
II.3.4.Diuretics	22
II.3.5. Stimulants	23

	Content
II.3.6. β blocker	23
II.3.7. β agonist	23
II.4. Methods of analysis for antidoping purposes	24
II.4.1. Electochemical methods for antidoping purposes	24
II.4.2. Capillary electrophoresis	27
II.4.3. Chromatographic methods for antidoping purposes	33
II.4.3.1.Gas Chromatography	33
II.4.3.2.High performance liquid Chromatography	47
Part III: Electrochemical methods for antidoping	purpose
Section A: Comparative study of normal, micro & nano-	sized iron
oxide particles' electrodes for the determination of Nalbu	phine HC
(NLB HCl)	
III.A.1. Introduction	90
III.A.2.Experimental	92
III.A.2.1.Apparatus	92
III.A.2.2.Materials	92
III.A.2.2.1.Reference sample for analyte and interfering drugs	92
III.A.2.2.2.Reagents	93
III.A.2.2.3.Standard solutions	94
III.A.2.3.Procedures	95
III.A.2.3.1.Fabrication of the membrane	95
III.A.2.3.2. Preparation and characterization of iron oxide magnetic	95
particles	
III.A.2.3.3. Preparation and characterization of iron oxide NPs	96

III.A.2.3.4. Functionalization of iron oxide ferrofluids	96
III.A.2.3.5.Electrode assembly	97
III.A.2.3.6.Direct potentiometric determination of NLB HCl in its pure	98
sample	
III.A.2.3.7.Direct potentiometric determination of NLB HCl in spiked	98
plasma samples	
III.A.2.3.8. Determination of NLB HCl in spiked urine samples	99
III.A.2.3.9.Study of experimental conditions	99
III.A.2.3.9.1.Identification of slope, response time and operative lifetime of	99
the proposed sensors	
III.A.2.3.9.2. Effect of pH	100
III.A.2.3.9.3. Effect of temperature	100
III.A.2.3.9.4. Effect of foreign compounds	100
III.A.3.Results and Discussion	101
III.A.3.1.Sensor fabrication	101
III.A.3.2. Sensor calibration and response time	104
III.A.3.3. Effect of pH and temperature	104
III.A.3.4.Sensor selectivity	105
III.A.3.5.Potentiometric determination of NLB HCl in plasma and urine	106
III.A.3.6.Figures of Merit	106
Section B: Potentiometric sensor based on molecular imprir	ited
polymer for determination of Tramadol HCl (TMD HCl)	ı
III.B.1. Introduction	120
III.B.2.Experimental	121
III.B.2.1.Apparatus	121

	onten
III.B.2.2.Materials	122
III.B.2.2.1.Reference sample	122
III.B.2.2.2.Reagents	122
III.B.2.2.3.Standard solutions	122
III.B.2.3.Procedures	123
III.B.2.3.1. MIP and NIP preparation with bulk polymerization	123
III.B.2.3.2. Preparation of the membrane sensor	124
III.B.2.3.3. Electrode Assembly	124
III.B.2.3.4. Direct potentiometric determination of TMD HCl in its put	re 125
sample	
III.B.2.3.5. Potentiometric determination of TMD HCl in spiked	125
plasma samples	
III.C.2.3.6. Potentiometric determination of TMD HCl in spiked urine	126
samples	
III.C.2.3.7. Experimental conditions	126
III.C.2.3.7.1. Identification of slope, response time and operative lifeting	ne 126
of the proposed sensor	
III.C.2.3.7.2.Effect of pH	127
III.C.2.3.7.3. Effect of temperature	127
III.C.2.3.7.4. Effect of foreign compounds	128
III.B.3. Results and discussion	128
III.B.3.1. Characterization	128
III.B.3.2. Physical characterization of TMD MIP	129
III.B.3.3. Optimal MIP formulation and progenic solvent	129
III.B.3.4. Sensor calibration and response time	131
III.B.3.5. Effect of pH and temperature	131

	Contents
III.B.3.6. Potentiometric determination of TMD in plasma and urine	132
III.B.3.7. Sensor selectivity	132
III.B.3.8. Figures of Merit	133
Part IV	
HPLC / DAD determination of doping drugs	3
Section A: Introduction to HPLC / DAD	
and its use for antidoping	
IV.A.1. HPLC separation techniques	146
IV.A.2. Reversed phase chromatography	147
IV.A.3. HPLC Detectors	147
IV.A.3.1.Diode array detectors	147
IV.A.4. HPLC/DAD and its use in doping analysis	148
Section B: HPLC / DAD	
determination of seven doping drugs in pure form with fur	ther
application to spiked human plasma and urine	
IV. B.1. Experimental	151
IV. B.1.1. Apparatus	151
IV.B.1. 2. Materials	151
IV.B.1.2.1. Reference samples	151
IV.B.1.2.2. Reagents	152
IV.B.1.2.3. Standard solutions	152
IV.B.1.2.4. Sample preparation	153

	Contents
IV.B.1.2.4.1. For plasma	153
IV.B.1.2.4.2. For urine	153
IV.B.1.3. Procedure	154
IV.B.1.3.1. Chromatographic Conditions	154
IV.B.1.3.2. Method validation	155
IV.B.1.3.2.1. Linearity	155
IV.B.1.3.2.2. Accuracy	155
IV.B.1.3.2.3. Precision	156
IV.B.1.3.2.3.1. Repeatability (intraday precision)	156
IV.B.1.3.2.3.2. Intermediate precision (interday precision)	156
IV.B.1.3.2.4. Selectivity	157
IV.B.1.3.2.5 Limit of Detection and Limit of Quantitation	158
IV.B.2. Results and discussion	158
IV.B.3. Application to Spiked Human Plasma	162
IV.B.3. Application to Spiked Human Urine	166
Part V	
HPLC / MS determination of doping drug	S
Section A	
Introduction to liquid chromatography / mass spec V.A.1. Theory	ctrometry 208
V.A.2. Components of Mass spectrometer	209
V.A.3. Mass spectrometry and doping control	210
V.A.4. LC/MS and its use for doping analysis	211
V.A.5. LC/MS versus GC/MS for doping analysis	211
V.A.6. LC/Tandem mass spectrometry for doping analysis	212
V.A.6.1. Triple Quadrupole (TQ) mass spectrometer	212
V.A.6.2. Tandem Mass Spectrometry on the IT	213

V.A.6.3. The (Quadrupole) Ion-Trap Mass Analyzer	213
Section B	
Simultaneous LC / MS/ MS analysis of 14 doping dru further application in human plasma and urin	
V.B.1.Experimental	215
V.B.1.1.Instrumentation	215
V.B.1.1.1.Equipment	215
V.B.1.1.2. LC parameters	215
V.B.1.1.3.MS parameters	215
V.B.1.2.Materials	216
V.B.1.2.1.Reference samples	216
V.B.1.2.2.Reagents	217
V.B.1.2.3. Preparation of standard stock and working solutions	217
V.B.1.2.4.Sample preparation	218
V.B.1.2.5.Method Validation	218
V.B.1.2.5.1.Linearity	218
V.B.1.2.5.2.Accuracy	219
V.B.1.2.5.3.Precision	219
V.B.1.2.5.3.1.Repeatability (intraday precision)	219
V.B.1.2.5.3.2.Intermediate precision (interday precision)	220
V.B.1.2.5.5. Limit of Detection and Limit of Quantitation	220
V.B.2. Results and discussion	221
V.B.3. Application to Spiked Human Plasma	225
V.B.3. Application to Spiked Human Urine	229
References	302

List of figures

Figure !	No.	Pag	e No.
Figure	(1):	Determination of synthesized iron oxide MPs' size by	
		Malvern Zetasizer.	97
Figure	(2):	Iron oxide NPs under JEOL JEM-2100 Transmission	
		Electron Microscope.	98
Figure	(3):	Profile of the potential in mV vs. – log concentration of	
		NLB HCl, using the investigated NLB HCl sensors.	108
Figure	(4):	Effect of pH on the response of NLB HCl sensor I.	108
Figure	(5):	Effect of pH on the response of NLB HCl sensor II.	109
Figure	(6):	Effect of pH on the response of NLB HCl sensor III.	109
Figure	(7):	Effect of Temperature on the response of NLB HCl sensor I.	110
Figure	(8):	Effect of Temperature on the response of NLB HCl sensor II	110
Figure	(9):	Effect of Temperature on the response of NLB HCl sensor	
		III.	111
Figure	(10):	Schematic representation of the MIP synthesis.	124
Figure	(11):	IR spectra of leached (A) and unleached (B) MIP.	134
Figure	(12):	UV absorption spectra of solutions before and after	134
		complete washing.	
Figure	(13):	Scanning electron micrographs: (A) leached NIP; (B)	
		unleached MIP; (C) leached MIP.	135
Figure	(14):	Profile of the potential in mV vs. – log concentration of	
		TMD HCl, using the investigated MIP and NIP sensors.	136
Figure	(15):	Effect of pH on the response of TMD HCl MIP sensor.	136
Figure	(16):	Effect of Temperature on the response of TMD HCl MIP sensor.	137

Figure	(17):	Chromatogram showing simultaneous separation of the seven drugs ($10\mu g \text{ ml}^{-1}$) at λ_{225} nm.	450
E.	(10)		170
Figure	(18):	Chromatogram showing simultaneous separation of the	
		seven drugs (10 μ g ml ⁻¹) at λ_{272} nm	170
Figure	(19):	Chromatogram showing simultaneous separation of the	
		seven drugs (10 μ g ml ⁻¹) at λ_{235} nm.	171
Figure	(20):	Chromatogram showing simultaneous separation of the	
		seven drugs (10 μ g ml ⁻¹) at λ_{242} nm	171
Figure	(21):	Chromatogram showing simultaneous separation of the	
		seven drugs (10 μ g ml ⁻¹) at λ_{244} nm.	172
Figure	(22):	Chromatogram showing simultaneous separation of the	
		seven drugs (10 μ g ml ⁻¹) at λ_{239} nm.	172
Figure	(23):	Linearity of the peak area corresponding to the	
		concentration of HCTZ.	173
Figure	(24):	Linearity of the peak area corresponding to the	
		concentration of SAL.	173
Figure	(25):	Linearity of the peak area corresponding to the	
		concentration of FUR.	174
Figure	(26):	Linearity of the peak area corresponding to the	
		concentration of IDP.	174
Figure	(27):	Linearity of the peak area corresponding to the	
		concentration of TSE.	175
Figure	(28):	Linearity of the peak area corresponding to the	
		concentration of SPIRO.	175
Figure	(29):	Linearity of the peak area corresponding to the	
		concentration of RMS.	176

Figure	(30):	Chromatogram of blank plasma at λ_{225} nm.	177
Figure	(31):	Chromatogram of plasma spiked with the seven drugs	
		(each of 2000 ng ml ⁻¹) at λ_{225} nm	177
Figure	(32):	Linearity of the peak area corresponding to the	
		concentration of HCTZ in plasma.	178
Figure	(33):	Linearity of the peak area corresponding to the	
		concentration of SAL in plasma.	178
Figure	(34):	Linearity of the peak area corresponding to the	
		concentration of FUR in plasma.	179
Figure	(35):	Linearity of the peak area corresponding to the	
		concentration of IDP in plasma.	179
Figure	(36):	Linearity of the peak area corresponding to the	
		concentration of TSE in plasma.	180
Figure	(37):	Linearity of the peak area corresponding to the	
		concentration of SPIRO in plasma.	180
Figure	(38):	Linearity of the peak area corresponding to the	
		concentration of BMS in plasma.	181
Figure	(39):	Chromatogram of blank urine after SPE at λ_{244} nm	182
Figure	(40):	Chromatogram of urine spiked with the seven drugs at	182
		λ_{244} nm after SPE	
Figure	(41):	Linearity of the peak area corresponding to the	
		concentration of HCTZ in diluted urine.	183
Figure	(42):	Linearity of the peak area corresponding to the	
		concentration of SAL in diluted urine.	183

Figure	(43):	Linearity of the peak area corresponding to the	
		concentration of FUR in urine after SPE.	184
Figure	(44):	Linearity of the peak area corresponding to the	
		concentration of FUR in diluted urine.	184
Figure	(45):	Linearity of the peak area corresponding to the	
		concentration of IDP in urine after SPE.	185
Figure	(46):	Linearity of the peak area corresponding to the	
		concentration of IDP in diluted urine.	185
Figure	(47):	Linearity of the peak area corresponding to the	
		concentration of TSE in urine after SPE.	186
Figure	(48):	Linearity of the peak area corresponding to the	
		concentration of TSE in diluted urine.	186
Figure	(49):	Linearity of the peak area corresponding to the	
		concentration of SPIRO in urine after SPE.	187
Figure	(50):	Linearity of the peak area corresponding to the	
		concentration of SPIRO in diluted urine.	187
Figure	(51):	Linearity of the peak area corresponding to the	
		concentration of BMS in urine after SPE.	188
Figure	(52):	Linearity of the peak area corresponding to the	
		concentration of BMS in diluted urine.	188
Figure	(53):	Total Ion chromatogram (TIC) showing the drugs	
		determined at both +ve and -ve ESI mode each at 150 ng	
		ml ⁻¹	234
Figure	(54):	Extracted ion chromatogram (XIC) for AMI (a), ATE (b),	
		BMS (c), Caffeine (d), DMS (e), HCTZ (f), IDP (g),	

		Morphine (h), NLB (I), Pethidine (J), PHE (K), TSE (L),	
		TOR (M) and TMC (N) each at 1000 ng ml ⁻¹	235
Figure	(55):	MRM for AMI (a), ATE (b), BMS (c), Caffeine (d), DMS (e), HCTZ (f), IDP (g), Morphine (h), NLB (I), Pethidine (J), PHE (K), TSE (L), TOR (M) and TMC (N) each at 1000 ng ml ⁻¹	238
Figure	(56):	Linearity of the peak area corresponding to the	
		concentration of PHE.	245
Figure	(57):	Linearity of the peak area corresponding to the	
		concentration of ATE.	245
Figure	(58):	Linearity of the peak area corresponding to the	
		concentration of Morphine.	246
Figure	(59):	Linearity of the peak area corresponding to the	
		concentration of AMI.	246
Figure	(60):	Linearity of the peak area corresponding to the	
		concentration of NLB.	247
Figure	(61):	Linearity of the peak area corresponding to the	
		concentration of Caffeine.	247
Figure	(62):	Linearity of the peak area corresponding to the	
		concentration of Pethidine.	248
Figure	(63):	Linearity of the peak area corresponding to the	
		concentration of HCTZ.	248
Figure	(64):	Linearity of the peak area corresponding to the	
		concentration of TOR.	249
Figure	(65):	Linearity of the peak area corresponding to the	
		concentration of DMS.	249