Recent Advances In Management Of Dislocation After Total Hip Replacement

Essay

Submitted for Partial Fulfillment of Master Degree in Orthopedic Surgery

Submitted by

Mohammed Gouda Ahmed

M.B.B.CH. (2010) Ain Shams University

Under Supervision of:

Prof. Dr. / Ahmed Samy

Assistant Professor of Orthopedic Surgery Faculty of Medicine, Ain Shams University

Dr. / Ayman Fathy

Lecturer of Orthopedic Surgery Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2017

First and foremost, I feel always indebted to **God**, the Most Beneficent and Merciful.

I wish to express my deepest gratitude and thanks to **Prof. Dr. Ahmed Samy,** Professor of Orthopedic Surgery Faculty of Medicine Ain Shams University, for his constructive criticism, unlimited help and giving me the privilege to work under his supervision.

My most sincere gratitude is also extended to **Dr. Ayman Fathy,** Lecturer of Orthopedic Surgery Faculty of Medicine Ain

Shams University, for his enthusiastic help, continuous supervision, guidance and support throughout this work.

Last but not least, I can't forget to thank all members of my Family, especially my **Parents** and my **Wife**, for pushing me forward in every step in the journey of my life.

Candidate

Mohammed Gouda

Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Abstract	viii
Introduction	1
Aim of the Work	4
Chapter (I): Anatomy of the Hip Joint	5
Chapter (II): Biomechanics of Total Hip Replacement	17
Chapter (III): Risk Factors and Etiology of Dislocation after Total Hip Replacement	29
Chapter (IV): Prosthetic design contribution to prevention of dislocation	
Chapter (V): Management	86
Summary	115
References	117
Arabic Summary	

List of Abbreviations

Abbr.	Full-term
ASIS	Anterior Superior Iliac Spine
CoC	Ceramic on Ceramic
MoM	Metal on Metal
PSIS	Posterior Superior Iliac Spine
THA	Total Hip Arthroplasty
TMJ	Two Modular Junction
UHMWPE	Ultra-high-molecular-weight polyethylene
XLPE	Highly cross-linked polyethylene

List of Tables

Table No	o. Title	Page No.
Table (1):	Relationship of Surgical Approach, Head Size, and Hip Dislocation	-
Table (2):	In Vivo wear rates of different surfaces in total hip arthroplasty	_
Table (3):	Combinations of Prosthetic Oriental That Permit Tying a Shoelace and Sto	
Table (4):	Implant orientation and summary of r	results 82
Table (5):	Indications and Contraindications use of constrained liners	
Table (6):	Classification System for the Unstablianthroplasty	

List of Figures

Figure No	. Title	Page No.
Figure (1):	The hip joint provides a high deg Stability and range of motion	
Figure (2):	Bony anatomy of the hip join	6
Figure (3):	Anteversion as femur is viewed femoral condyles (A), and from neck of femur.	top of
Figure (4):	The normal bony acetabulum is degree to the horizontal, the ace labrum reduces this to 45° degree	etabular
Figure (5):	The Iliofemoral & the Pubof ligaments	
Figure (6):	Quadrant System of the Hip	14
Figure (7):	Forces acting on hip Joint	17
Figure (8):	Forces producing torsion of stem	19
Figure (9):	Lengthening the lever arm of the almechanism	
Figure (10):	Vertical height and offset & neck len	ngth 23
Figure (11):	Arcs of motion with small and large and cups.	
Figure (12):	Surgical approaches to Hip Arthropl	lasty 34
Figure (13):	Wrong positioning along with in stabilization of the patient on the op table can result in acetabular malpos	erating

Figure No	. Title Page	No.
Figure (14):	Bar chart showing the percentage of dislocations associated with each femoral head size used in the conversions of the hemiarthroplasties and in the first-time revisions of the total hip arthroplasties	
Figure (15):	Diagrams illustrating the effects of "femoral head downsizing" with conversion from a hemiarthroplasty to THA.	
Figure (16):	Relation of dislocation to the inclination & anteversion angles of the cup	
Figure (17):	Relationship of dislocation to the anteversion angle of the cup and the antetorsion angle of the stem	
Figure (18):	Relationship of dislocation to the inclination angle and the sum of the anteversion angle of the cup and the antetorsion angle of the stem	
Figure (19):	Biomechanics of impingement	49
Figure (20):	The effect of increasing the femoral head size on impingement.	
Figure (21):	A trapezoidal stem geometry favors an increase in the impingement free range of motion compared with that associated with a circular neck design	

Figure No	. Title	Page No.
Figure (22):	On the left, an osteoarthritic right has a varus femoral neck-shaft angle of	-
Figure (23):	Anterior-posterior radiograph of the in a 68-year-old patient.	-
Figure (24):	Composite "cone of motion" producomputer animation.	
Figure (25):	Influence of surgical appreoperative ROM, and head so dislocation rates in total hip arthrop	ize on
Figure (26):	An implant retrieved at surgery in that the skirted head was impinging elevated rim liner posteriorly, leadislocation as well as to expolyethylene wear	on the ding to cessive
Figure (27):	Estimated ranges of motion of the head on the 14/16 taper, collar rein 28mm head on the 14/16 taper (mand 28mm on the 12/14 taper	nforced niddle),
Figure (28):	Radiographic measurement	65
Figure (29):	Design aspects with direct influence range of motion	
Figure (30):	Photographs of high-density-polye neutral and 10-degree elevated-rim	•
Figure (31):	Comparison of a liner with a high narrow chamfer zone (A) with a line a low angle, wide chamfer zone (B)	er with

Figure No	. Title	Page No.
Figure (32):	The elevated portion of the liner of the arc of motion	
Figure (33):	Illustration demonstrates how the the prosthesis can impinge on the rim	elevated
Figure (34):	(Left) ceramic-on-ceramic, (metal-on-metal, (Right) metal-o cross-linked polyethylene	n-highly
Figure (35):	A, Anteroposterior radiograph horizontal cup placement wi abduction. In spite of adequate ant on shoot-through lateral radiograposterior dislocation occurred wi flexion (C)	th 30° eversion aph (B), ith deep
Figure (36):	Implants positioned in the safe z less likely to dislocate than those the safe zone	outside
Figure (37):	(A) The cup without the head is (B) On crossing the equator of the head opens the ring, (C) which the through simple elasticity	cup, the en closes
Figure (38):	Once the head has crossed the ring below the equatorial plane. There most situations, the cup is not constrained liner.	efore, in really a
Figure (39):	The algorithmic approach to a patirecurrent instability	

Figure No	. Title	Page No.
Figure (40):	The components appear to be positioned on the antero-pradiograph of the hip of a patient recurrent dislocation	osterior nt with
Figure (41):	Close scrutiny of the radiograph dislocated total hip replacement may useful.	be very
Figure (42):	Suboptimal positioning of the company lead to intraoperative instability	•
Figure (43):	Tripolar arthroplasty; (A: The large B: The smaller joint; C: The third jo	
Figure (44):	A cup designed with a constrained that fits onto the femoral composhown	nent is
Figure (45):	(A): AP of the hip demonstrating father constrained liner. (B): the mechanism (ring) of the constrained has broken	locking ed liner
Figure (46):	Acetabular augmentation ring p fixed to the acetabular component dislocating total hip arthroplasty	of the
Figure (47):	Redislocation	113

Abstract

Dislocation remains one of the most common complications after total hip arthroplasty, regardless of the surgical approach. While multiple reasons as laxity, implant position, improper implant choice, and impingement etc. might be leading factors for dislocation, an exact identification of the exact reason is of major importance, to plan for a proper surgical or nonsurgical correction.

This essay describes the definition, etiology, reduction, and possible treatment options for dislocation after total hip replacement. It furthermore includes an overview of possible surgical treatment options, based on the main pathology leading to dislocation.

Keywords

Dislocation, Surgical approach, Head size, Closed reduction, Anatomy, Biomechanics, Total hip, Prosthesis, Etiology, Risk factors, Hip joint, Soft tissue, Liner, Constrained, Bipolar, Tripolar, Acetabulum, Femur, Impingement.

Introduction

Total hip arthroplasty (THA) is a re-constructive procedure that has improved the management of those diseases of the hip joint that have responded poorly to conventional medical therapy ¹.

Dislocation following total hip arthroplasty is one of the most common complications of this procedure that can occur during both early and late postoperative period. Direction of dislocation of a THA is usually posterior (77%), anterior dislocation is much less frequent (23%), whereas superior or Lateral dislocation has also been described ².

For treatment purposes, dislocation after total hip arthroplasty can be categorized as early or late on the basis of the timing of the onset. Early dislocation usually occurs in the early post- operative period after the arthroplasty and is often successfully treated with nonoperative means. In contrast, late dislocation occurs after five years and generally requires surgical treatment. Dislocations occurring between six months and five years may be categorized as intermediate. This temporal classification is useful because it highlights the differences in the etiology of the dislocation in each category, which in turn determine the type of treatment that is selected ³.

The etiology of hip instability is often multi-factorial. Patient demographics, operative technique and implant design variables have been demonstrated to affect the risk of dislocation ⁴.

Also, Component malpositioning and abductor insufficiency are two of the most important recognized causes of recurrent dislocation. And hence, Surgeons are well that preventing dislocation is far preferable to having to manage the problem ⁵.

Some dislocation problems can be avoided by preoperative identification of patients at high risk for dislocation and applying appropriate preventive measures. Also, careful preoperative planning with implant templates helps prevent instability problems. Templating allows the surgeon to predict the optimal location and orientation of implants relative to bony landmarks of the pelvis and femur and predicts the proper level of femoral neck osteotomy importantly, it also allows the Surgeon to choose implants that will restore leg length, femoral offset, and soft tissue tension. Other implant-related factors that affect hip stability include; femoral component offset, femoral component head to neck diameter ratio, femoral component neck geometry, and acetabular component design ⁶.

Other preventive measures include the proper choice of the approach, hip stability testing, proper soft tissue repair, use of constrained devices (when the surgeon preoperatively or intraoperatively identifies instability problems that cannot be solved with conventional implants). Also, to prevent early dislocation, it is common practice to impose postoperative restrictions. These restrictions include strict advices regarding permissible posture while standing, walking, sitting, or sleeping. Some patients may also benefit from prophylactic postoperative bracing ⁷.

Treatment of dislocation after THA may be conservative, mostly for early dislocation, or operative, mostly for late dislocation. Conservative treatment after reduction includes cast or brace application for immobilization. Options for operative treatment vary, there may be component exchange, revision arthroplasty, bipolar or tripolar arthroplasty, large femoral head application, soft tissue reinforcement, constrained liners, or resection arthroplasty. Each of them has indications and contraindications depending on the type of the patients and the condition of the hip joint ⁵.

During the operation, an effort should be made to identify the source of instability and if necessary manage it at the time of the open reduction ⁵.