The Prognostic Value of the Prechemotherapy Neutrophil - Lymphocyte Ratio in Gastric Cancer

Thesis

Submitted for partial fullfillment of Master Degree in Clinical Oncology and Nuclear Medicine

 $\mathfrak{B}\chi$ Monika Magdy Youssef (M.B.B.C.H)

Under Supervision of

Prof. Dr. Tarek Hussein Kamel

Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine, Ain Shams University

Ass. Prof. Dr. Ahmed Ezzat Eissa

Assistant Professor of Clinical Oncology and Nuclear Medicine Faculty of Medicine, Ain Shams University

Dr. Ahmed Mohamed Gaballah

Lecturer of Clinical Oncology and Nuclear Medicine Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2017

Acknowledgment

First and foremost, I feel always indebted to **GOD**, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Tarek Hussein**, Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Ass. Prof. Dr. Ahmed Ezzat, Assistant Professor of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance through out this work.

I am deeply thankful to **Dr.** Ahmed Gaballah, Lecturer of Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, for his great help, active participation and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Monika Magdy Youssef

List of Contents

Title	Page No.
List of Tables	4
List of Figures	6
List of Abbreviations	9
Introduction	1
Aim of the Work	17
Review of literutura	
- Epidemiology and Risk Factors	18
- Diagnosis and Staging	36
- Treatment of Gastric Cancer	
- Prognostic Factors of Gastric Cancer	141
Subjects and Methods	212
Results	
Discussion	238
Summary	249
Conclusion	252
Recommendation	253
References	254
Arabic Summary	_

List of Tables

Table No	. Title	Page No.
Table (1):	The Paris Endoscopic Classification	44
Table (2):	Gastric adenocarcinoma classification systems .	
Table (3):	Human epidermal growth factor receptor 2 (H	
	scoring criteria for gastric cancer	
Table (4):	Nodal Compartments to be removed for each ty	•
	lymph node dissection as defined by the Jap	
	Research Society for Gastric Cancer	
Table (5):	Patient characteristics and survival in GEJ carci	
	trials	
Table (6):	Summary of phase I and II trials investigation in	_
	of neoadjuvant chemoradiotherapy for lo	•
	advanced gastric cancer	
Table (7):	Patient characteristics, side effects and surviv	
	different gastric cancer trials	
Table (8):	Trials about palliative chemotherapy	
Table (9):	Trials about targeted therapy	
Table (10):	Checkpoint inhibitors in gastric cancer immunother	
Table (11):	List of clinical trials in gastric cancer using im	
	checkpoint inhibitors	
Table (12):	Summary of the DVH parameters examined	
Table (13):	Correlation Between Tumor Size and Clinicopathe	_
	Factors	
Table (14):	Patient and tumor characteristics of patients incl	
Table (15):	Patient and tumor characteristics of patients incl	
Table (16):	Correlation between preoperative serum to	
	makers and major clinic pathological traits i	
	validation cohort	
Table (17): (Clinicopathologic characteristics and PD-LI and	
	expression in gastric cancer patients	
Table (18):	Results of Jin et al.	
	Patient demographic characteristics	
Table (20):	Tumor site in upper Gl Endoscopy	
Table (21):	Gross morphology in Upper GI endoscopy	
Table (22):	Lauren's Classification	
Table (23):	Tumor's grade	
Table (24):	Lymphovascular invasion and perineural invasion	on219

List of Tables (Cont.)

Table No	. Title	Page No.
Table (25):	Ascites at diagnosis	219
Table (26):	Tumor stage	220
Table (27):	Metastasis at diagnosis	220
Table (28):	Number of sites of metastasis	221
Table (29):	Site of metastasis	221
Table (30):	Prechemotherapy neutrophil to lymphocyte ratio	223
Table (31):	Correlation between age and NLR	
Table (32):	Correlation between sex and NLR	224
Table (33):	Correlation between smoking and NLR	225
Table (34):	Correlation between DM and NLR	226
Table (35):	Correlation between tumor site and NLR	227
Table (36):	Correlation between tumor gross morphology	y and
	NLR	228
Table (37):	Correlation between Lauren's classification and NL	R229
Table (38):	Correlation between tumor's grade and NLR	230
Table (39):	Correlation between LVI and NLR	230
Table (40):	Correlation between PNI and NLR	231
Table (41):	Correlation between ascites and NLR	232
Table (42):	Correlation between stage and NLR	233
Table (43):	Correlation between response to treatment and NL	R234
Table (44):	Correlation between response to chemotherap	y and
	NLR in metastatic patients	235
Table (45):	Correlation between event free survival (EFS	
. ,	NLR	235
Table (46):	Correlation between overall survival (OS) and NI	R236

List of Figures

Fig. No.	Title F	Page No.
Figure (1):	Troisier's sign	40
Figure (2):	Sister Joseph's nodule	40
Figure (3):	Trousseau's sign	
Figure (4):	Acanthosis nigricans	42
Figure (5):	Blumer shelf	43
Figure (6):	The Paris Endoscopic Classification	45
Figure (7):	Endoscopic findings of superficial elevated (0 II	a) type
	early gastric cancer in the gastric antrum	45
Figure (8):	Endoscopic findings of superficial depressed	(0 IIc)
	type early gastric cancer in the gastric cardia	46
Figure (9):	Endoscopic findings of superficial depressed	(0 IIc)
	type early gastric cancer in the gastric body	46
Figure (10):	Borrmann Classification of advanced gastric can	cer47
Figure (11):	Papillary adenocarcinoma	
Figure (12):	Tubular adenocarcinoma	50
Figure (13):	Mucinous adenocarcinoma	51
Figure (14):	Signet-ring cell adenocarcinoma	
Figure (15):	Micropapillary carcinoma	
Figure (16):	Carcinoma of the lesser curve	
Figure (17):	Enlarged porta hepatis lymph nodes, ascites and o	
	involvement	
	Celiac-axis nodes and irregular liver metastasis	
	The gastric wall as visualized by EUS	
_	Treatment algorithm of Gastric cancer	
Figure (21):	The extent of lymphadenectomy after	total
	gastrectomy	73
Figure (22):	The extent of lymphadenectomy after	
	gastrectomy	
_	Types of reconstruction pocedures	
Figure (24):	The extent of lymphadenectomy after py	
	preserving gastrectomy	
Figure (25):	The extent of lymphadenectomy after pro-	
	gastrectomy	
Figure (26):	Location of gastric lymph node stations accord	
	Japanese research society for Gastric Cancer (JRSS	C)81

List of Figures (Cont.)

Fig. No.	Title	Page 1	۷o.
Figure (27):	Pathways that represent potential targets		
	treatment of advanced stage GC		
	Immune checkpoint targeting		.126
Figure (29):	Mean dose volume histograms for PTV, CTV		
	and healthy tissue for global analysis according	_	
	treatment plan		
_	3D, IMRT, Proton therapy		
•	Conventional radiation		
• •	IMRT radiation		. 139
Figure (33):	Comparative accuracies of survival analysis. A,		
	curve of patients according to subgroups of T s	_	
	Survival curve of patients according to subgroup	-	
	stage. C, Survival curve of patients according to su	-	
	of TNM stage. D, Survival curve of patients acco	_	1.45
E: (2.4).	subgroups of TsNM stage		145
Figure (34):	Representative gastroendoscopy images of a		1.4.0
Figure (25).	gastric cancer by macroscopic classification		. 140
rigure (35):	Kaplan-Meier curves showing difference in free survival and overall survival between macro	-	
	high-risk group and average-risk group		147
Figure (26).	Kaplan-Meier curves showing difference in cur		.14/
rigure (30):	survival between well, moderately and		
	differentiated gastric cancer		150
Figure (37).	Curves showing probability of death due to		.150
Figure (37).	cancer in different stages with respect to path	-	
	subtypes included in Bamboat et al	-	153
Figure (38).	Kaplan-Meier curves showing difference in cur		. 133
rigure (50).	overall survival between tumor marker (CA 12		
	19.9 or CEA) -positive and tumor marker-		
	population in Wang et al	_	.160
Figure (39):	Relation between inflammation and carcinogen		
_	Pre-metastatic niche formation		
. ,	Immunosurveillance in cancer		
Figure (42):	Relationship Between PD-LI Expression And		
	Time		175

List of Figures (Cont.)

Fig. No.	Title	Page No.
Figure (43):	Kaplan-Meier analysis of the relationship	between
	APEI immunoassaying and survival time	
Figure (44):	Relationship between APEI and PD-LI Coex	
	and survival time	
Figure (45):	Kaplan-Meier curves showing the difference in DFS	
	between patients with high PNI and patients with lov	
Figure (46):	Kaplan-Meier curves showing the difference in	•
	overall survival between patients with high fibring	•
Figure (47).	patients with low fibrinogen	
Figure (47):	Th1 cytokine response Vs. Th2 cytokine response Role of neutrophils in carcinogenesis and	
Figure (40).	progression	
Figure (49).	Role of neutrophils in carcinogenesis and	
1 iguit (42).	progression	
Figure (50):	Kaplan-Meier curves showing difference in OS	
3 ()	high NLR group and low NLR group in Jin et al.	
Figure (51):	Progression Free Survival (PFS) Curves in Mus	
Figure (52):	Overall Survival (OS) Curves in Musri et al	199
Figure (53):	Relation between CD3 density, CD4 density	ty, CD8
	density and NLR	
Figure (54):	Kaplan-Meier curves showing difference in I	
	OS between high NLR group and low NLR	
F: (55)	Choi et al	
Figure (55):	RIGHT kapaln-Meier curves showing difference	
	high NLR group and low NLR group in both and advanced gastric cancer. LEFT Kapla	
	curves showing difference in OS between hi	
	group and low PLR group in both localis	_
	advanced gastric cancer	
Figure (56):	Kapaln-Meier curve showing difference	
	between groups with different COA-NLR score	
Figure (57):	Role of PSK in cancer	210
Figure (58):	Kaplan-Meier curve showing difference	in EFS
	between high NLR group and low NLR group.	
Figure (59):	Kaplan-Meier curve showing difference	
	between high NLR group and low NLR group.	237

List of Abbreviations

Full term Abb. AGC Advanced gastric cancer AID..... Activation induced deaminase APCs Antigen-presenting cells APE1..... Apurinic/apyrimidinic endonuclease 1 ASIR Age-standardized incidence rate BMDCs Bone marrow-derived cells BSC Best supportive care CO..... carbon monoxide CRP...... C-reactive protein CRT......Chemoradiotherapy CTCAE......Common Terminology Criteria for Adverse **Events** DC...... Dendritic cells DCR Disease control rate DFS..... Disease-free survival EBV..... Epstein-Barr virus ECOG..... Eastern Cooperative Oncology Group EFS Event-free survival EGFR Epidermal growth factor receptor EMR..... Endoscopic mucosal resection ESD..... Endoscopic submucosal dissection FAP..... Familial adenomatous polyposis FFQ.....Food frequency questionnaire GC Gastric cancer

List of Abbreviations (Cont.)

Full term Abb. GEJ Gastro-esophageal junction HDGC Hereditary diffuse gastric cancer HER2 Human epithelial growth factor receptor 2 HIPEC Hyperthermia intraperitoneal chemotherapy JGCA Japanese Gastric Cancer Association JPS......Juvenile polyposis syndrome LRRFS Loco-regional recurrence free survival LVI..... Lympho-vascular invasion MAPK Mitogen-activated kinase mGC..... metastatic gastric cancer mGPS...... Modified Glasgow Prognostic Score MHC Major histocompatibility complex MMP-9..... Matrix metalloproteinase NK...... Natural killer cells NKT Natural killer T cells NLR Neutrophil to Lymphocyte ratio NOC N-nitroso compounds OAR Organs at risk ORR Objective response rate OS Overall survival PAH Polycyclic aromatic hydrocarbons pCR pathological complete response PDGFR Platelet derived growth factor receptor PFS Progression-free survival

List of Abbreviations (Cont.)

Full term Abb. PI3K..... Phosphoinositide 3-kinase PJS.....Peutz-Jeghers syndrome PLR.....Platelet to lymphocyte ratio PNI..... Perineural invasion PTEN Phosphatas and Tensin homolog RECIST..... Response Evaluation Criteria In Solid Tumors RFS..... Relapse free survival ROS...... Reactive oxygen species RR Response rate transducers STAT3.....Signal and activators of transcription TAMs Tumor-associated macrophages TDSFs......Tumor-derived secreted factors TGF- αTransforming growth factor alpha TGF- αTransforming growth factor- α TKI...... Tyrosine kinase inhibitor TNF α Tumor necrosis factor alpha TTP Time to progression VEGF Vascular endothelial gross factor WPT......Water pipe tobacco

Introduction

astric cancer is the fifth most common cancer worldwide, with about one million (952,000) new cases diagnosed annually (*Chen et al.*, 2015).

More than 70% of gastric cancers occur in developing countries, particularly in Eastern Asia. The peak age for gastric cancer is 60-80 years (*Zeeneldin et al.*, 2014).

According to the GLOBOCAN database, gastric adenocarcinoma (GC) is the third leading cause of cancer-related death worldwide, after lung and liver malignancies, resulting in around 723,000 deaths in 2012 (*Ferlay et al.*, 2015).

Although there have been advances in diagnosis and management, most GC patients present with locally advanced or metastatic disease, with a 5-year survival rate of <10% (Wang et al., 2015).

In Egypt, gastric cancer is the 12th most common cancer in both sexes, representing 1.6 % of total cancers. It's the 12th leading cause of cancer death, representing 2.2 % of total cancer mortality. Median age of gastric cancer in Egypt is 56 years (*Zeeneldin et al.*, 2014).

Environmental risk factors include Helicobacter pylori (H. pylori) infection, smoking, high salt intake and other

dietary factors. Though most gastric cancers are considered sporadic, it is estimated that 5 % to 10 % have a familial component; and 3 % to 5 % are associated with inherited cancer predisposition syndromes. The most common hereditary cancer predisposition syndromes are: - Hereditary Diffuse Gastric cancer, Lynch Syndrome, Juvenile Polyposis Syndrome, Peutz-Jeghers Syndrome and Familial Adenomatous Polyposis (NCCN Guidelines Version 1.2017).

Treatment strategies are determined by TNM staging system. However, many patients of the same TNM stage have different prognoses (Jingxu Sun et al., 2015).

Gastric Cancer exhibits diverse prognoses according to various intrinsic characteristics. Therefore, the development of efficient treatment strategies for the various prognostic groups within GC is important. With this, we can more readily understand the underlying biological mechanisms of each subtype of GC, to effectively individualize each treatment strategy (Chan-Young et al., 2017).

Several prognostic factors in GC have been reported: performance status, tumor burden, tumor markers such as carbohydrate antigen 19-9 (CA-19-9), the high metabolic landscape of the tumor and weight loss during chemotherapy. They have been independently correlated with a poor prognosis (Ock et al., 2016).

It is increasingly recognised that variations within clinical outcomes in cancer patients are influenced; by not only the oncological characteristics of the tumor, but also the hostresponse factors. The possibility of combining multiple clinically available host- and tumor related factors is of great interest; as it might serve as an excellent basis for clinical decision-making, treatment planning and establishing follow-up schedules (Chen et al., 2015).

A number of studies have focused tumor microenvironment, which is associated with the systemic inflammatory response; and may play an important role in cancer tumorigenesis and progression (Jingxu Sun et al., 2015). This inflammatory response reflects a non-specific response to tumor hypoxia tissue injury and necrosis (Chua et al., 2012).

Systemic inflammatory response to tumors increases metastasis through the inhibition of apoptosis, augmentation of angiogenesis and DNA damage (Aldemir et al., 2015).

Many markers of systemic inflammation response to tumors have been investigated as prognostic and predictive biomarkers, such as C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) (Nozoe et al., 2011).

Inflammatory cytokines and chemokines can be produced by both the tumor and associated host cells, such as leukocytes, and contribute to malignant progression.

Neutrophilia, as an inflammatory response, inhibits the immune system by suppressing the cytolytic activity of immune cells such as lymphocytes, activated T cells and natural killer cells.

Neutrophils and other cells, such as macrophages, have been reported to secrete tumor growth promoting factors, including: - vascular endothelial growth factor, hepatocyte growth factor, IL-6, IL-8, matrix metalloproteinases and elastases. Thus, they likely contribute to a stimulating tumor microenvironment (Templeton et al., 2014).

The importance of lymphocytes has been highlighted in several studies; in which increasing infiltration of tumors with lymphocytes has been associated with better response to cytotoxic treatment and prognosis in cancer patients (Loi et al., 2013).

The neutrophil to lymphocyte ratio (NLR), which is suggested as the balance between pro-tumor inflammatory status and anti-tumor immune status, has been shown to be associated with outcomes in patients with various types of malignancies (Pistelli et al., 2015) such as Renal cell carcinoma, Hepatocellular carcinoma and colorectal cancer (*Pichler et al.*, 2013).