

بسم الله الرحمن الرحيم

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام من ٢٠-٠٤% منوية ورطوية نسبية من ٢٠-٤٠ المنافلات ال

بعض الوثائـــق الاصليــة تالفــة

بالرسالة صفحات لم ترد بالاصل

Menoufiya University
Faculty of Engineering
Civil Engineering Department

STRENGTHENING OF REINFORCED CONCRETE DEEP BEAMS USING NEAR-SURFACE MOUNTED TECHNIQUE (NSM)

By
Eng. Noha Yehia Gad El-wakkad
B.Sc. Civil Engineering Department,
Faculty of Engineering, Menoufiya University, 2004.

A THESIS

Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science in Engineering.

(Structural Engineering-Concrete)

Supervisors

Dr. Nageh Nassif Meleka

Associate Professor of Concrete Structures, Faculty of Engineering, Menoufiva University.

Ali M. 08

Dr. Khaled Mohamed Heiza

Associate Professor of Concrete Structures, Faculty of Engineering, Menoufiva University.

Faculty of Engineering

Menoufiya University

2008

~ Col

Menoufiya University
Faculty of Engineering
Civil Engineering Department

STRENGTHENING OF REINFORCED CONCRETE DEEP BEAMS USING NEAR-SURFACE MOUNTED TECHNIQUE (NSM)

By Eng. Noha Yehia Gad El-wakkad

B.Sc. Civil Engineering Department, Faculty of Engineering, Menoufiya University, 2004.

A THESIS

Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science in Engineering (Structural Engineering-Concrete)

Examiners Committee

■ Prof. Dr. Omar Aly Mosa El-Nawawy
Prof. of Reinforced Concrete Structures,
Faculty of Engineering, Ain-Shams University.

■ Prof. Dr. Magdy Abd El-Hamid Tayel Prof. of Reinforced Concrete Structures, Faculty of Engineering, Menoufiya University.

Dr. Nageh Nassif Meleka
 Ass. Prof. in Civil Engineering Dept.,
 Faculty of Engineering, Menoufiya University.

Nogch Melila

Dr. Khalid Mohamed Heiza
 Ass. Prof. in Civil Engineering Dept.,
 Faculty of Engineering, Menontrya University.

Faculty of Engineering Menoufiya University 2008

STATEMENT

This thesis is submitted to the Department of Civil Engineering, Faculty of Engineering, Menoufiya University, for the award of the Degree of Master of Science in Engineering.

Thesis Title:

STRENGTHENING OF REINFORCED CONCRETE DEEP BEAMS USING NEAR-SURFACE MOUNTED TECHNIQUE (NSM)

The work included in this thesis has been carried out by the author in the Department of Civil Engineering, Faculty of Engineering, Menoufiya University.

No part of this thesis has been submitted to any university or institute of the award of a degree or a qualification.

Author's name: Noha Yehia Gad El-Wakkad

Signature: (Noho yehia

Date

The above statement has been signed by the author.

Supervisors

Head of the Department

Dr. Nageh Nassif Melaka

(Lelle) Prof. Dr. Maher Taha Elnemr

Whelkin (M. El-News

Dr. Khaled Mohamed Heiza

1

STRENGTHENING OF REINFORCED CONCRETE DEEP BEAMS USING NEAR-SURFACE MOUNTED TECHNIQUE (NSM)

M.Sc. Thesis in Engineering

Civil Engineering Department, Faculty of Engineering, Menoufiya University

By Eng. Noha Yehia Gad El-Wakkad ABSTRACT

Near-surface mounted (NSM) reinforcement techniques using traditional or advanced composite materials such as fiber-reinforced polymer (FRP) bars or strips are being increasingly recognized as a valid alternative to externally bonded laminates for enhancing flexural and shear strength of deficient concrete structures. As this technology emerges, the structural behavior of strengthened reinforced concrete (RC) elements strengthened using NSM technique needs to be fully characterized. In this research, an experimental program consists of testing sixteen RC deep beams (two control deep beams and fourteen strengthened deep beams). Steel bars, steel plates, carbon fiber reinforced polymer CFRP, and glass fiber reinforced polymer GFRP were used for shear strengthening of tested beams using NSM technique. The investigated variables in this study were strengthening material, strengthening pattern, and end anchorage of the rods. Beam models were tested and subjected to incremental loads till failure. Performance of the tested beams and modes of failure were presented and discussed in this research. The test results confirm that NSM technique can be used significantly to increase the shear capacity of RC deep beams, with different efficiency that varies depending on the selected variables.

The experimental program includes also a new approach for producing a well-compacted concrete with good characteristic properties using self-compacting concrete. The main objective of using self-compact concrete (SCC) is to resist segregation without any mechanical vibration however, self-compact concrete (SCC) is compacted under its own weight.

Two different numerical models using finite element method were applied to study the behavior of the tested deep beams. The first method based on 3-D finite elements. Each element is 20 nodes isoparametric brick element with embedded steel bars. The second model based on 2-D isoparametric degenerated layered elements. Each element with 8 nodes and each node with 5 degrees of freedom. Comparisons between experimental and numerical results show a good agreement.

<u>Keywords</u>:- Reinforced concrete deep beams, strengthening, Fiber reinforced polymers, Near surface mounted, Self-compact concrete, Finite element, Material nonlinearities.

Supervisors:

Ass. Prof. Nageh N. Meleka Ass. Prof. Khaled M. Heiza **ACKNOWLEDGEMENTS**

The author wishes to express her sincere gratitude and fully

grateful to Dr. Nageh N. Meleka Associate Professor, Civil

engineering Department, Faculty of Engineering, Menoufiya University,

for his valuable suggestions, helpful advices and constructive criticism

during this research work.

Gratitude is also extend to Dr. Khaled M. Heiza, Associate

Professor, Civil Engineering Department, Faculty of Engineering,

Menoufiya University, for his suggestions for the research point, for his

generous supervision, helpful suggestions and constructive criticism

during this thesis.

Many thanks are also extend to all the staff members of reinforced

)

concrete laboratory for their assistance and cordial relationship.

Author: Noha Yehia Gad El-Wakkad

Signature: (

- III -

TABLES OF CONTENTS

Title	n
	Page
Statement Abstract	I
Acknowledgement	ĪI
Table of Content	III
List of Tables	IV
List of Figures	X
3	XI
CHAPTER (1)	
INTRODUCTION	
1.1. General	•
1.2. Historical Background	1
1.3. The Research Objective	3 4
1.4. Thesis Out Lines	4
	7
CHADTED (2)	
CHAPTER (2) LITERATURE REVIEW	
2.1. Behavior of Reinforced Concrete Deep Beams with Web Openings	7
2.1.1 Introduction	7
2.1.2 Deep beams in current design codes of practice.	7
2.1.2.1 Egyptian code (ECP 203-2007) 2.1.2.1.1 Flexural Strength	7
2.1.2.1.1 Flexitial Strength	8
2.1.2.2 American code (ACI 318-02)	8
2.1.2.2.1 Flexural Strength	10
2.1.2.2.2 Shear Strength	10
2.1.2.3 Canadian Code (CAN3- A23.3- M84)	11
2.1.2.3.1 Flexural Strength	13 13
2.1.2.3.1.1 Minimum Tension Reinforcement	13
2.1.2.3.1.2 Web Reinforcement	13
2.1.2.3.2 Shear Strength	14
2.1.2.4 Euro Code and CEB-FIP Model Code 2.1.2.4.1 Flexural Strength	15
2.1.2.4.2 Shear Strength and Web Reinforcement	15
2.1.3 Historical Background	16
2.2 Self-Compacting Concrete	17
2.2.1 Introduction	22
2.2.2 Historical Background	22
2.2.3 Engineering properties	23 29
2.2.3.1 General	29 29
2.2.3.2 Compressive Strength	30
2.2.3.3 Tensile Strength	30
2.2.3.4 Static Modulus of Elasticity	31

2.2.3.5 Creep	32
2.2.3.6 Shrinkage	32
2.2.3.7 Coefficient of Thermal Expansion	33
2.2.3.8 Bond to Reinforcement, Prestressing and Wires	34
2.2.3.9 Shear Force Capacity across Pour Planes	34
2.2.3.10 Fire Resistance	35
2.2.3.11 Durability	35
2.2.4 Constituent Materials	36
2.2.4.1 General	36
2.2.4.2 Cement	37
2.2.4.3 Additions	37
2.2.4.3.1 Mineral Fillers	38
2.2.4.3.2 Fly Ash	38
2.2.4.3.3 Silica Fume	38
2.2.4.3.4 Ground Blastfurnace Slag	39
2.2.4.3.5 Other Additions	39
2.2.4.4 Aggregates	39
2.2.4.4.1 Coarse Aggregate	
2.2.4.4.2 Fine Aggregate / Sands	39
2.2.4.5 Admixtures	40
	40
2.2.4.5.1. Superplasticiser / High Range Water Reducing Admixtures	40
2.2.4.5.2 Viscosity Modifying Admixtures	41
2.2.4.5.3 Air Entraining Admixtures 2.2.4.6 Pigments	41
2.2.4.7 Fibres	41
	42
2.2.4.8 Mixing Water	42
2.2.5 Mix Composition	42
2.2.5.1 General	42
2.2.5.2 Mix Design Principles	42
2.2.5.3 Mix Design Approach	43
2.2.6. Placing and Finishing on Site	44
2.2.6.1. Placing Distance	44
2.2.6.2. Surface Finishing	44
2.2.7. Curing	44
2.2.8. Quality Control	45
2.2.8.1 Production Control	45
2.2.8.2 Site Acceptance	45
2.2.9. Test Methods	45
2.2.9.1. Fresh Concrete	45
2.2.9.1.1 Slump Flow + T50	46
2.2.9.1.2 L-Box	49
2.2.9.1.3 J-ring	52
2.2.9.1.4 V-Funnel	55
2.2.9.2. Properties of Hardened SCC	57
2.2.9.2.1 Microstructure	57
2.2.9.2.2. Compressive Strength	58
2.2.9.2.3. Modulus of Elasticity	59
2.2.9.2.4. Bond Strength	59
2.2.9.2.5 Indirect Tensile Test	61
2.2.9.2.6 Shrinkage	62
2.10 Application of Self-Compact Concrete	62
-	

2.2.10.1 Introduction	62
2.2.10.2 Developing SCC Mixes	64
2.2.10.3 Case Studies	64
2.2.10.3.1 Ritto Bridge, Japan	64
2.2.10.3.2 Higashi-Oozu Viaduct, Japan	65
2.2.10.3.3 The Sodra Lanken Project, Sweden	65
2.2.10.3.4 Channel Tunnel Rail Link	66
2.2.10.3.5 Early Applications of SCC	66
2.3 Fiber Reinforced Polymers in Civil Engineering	67
2.3.1 Introduction	67
2.3.2 Material Properties	68
2.3.3 Historical Background	71
2.3.4 Near-Surface Mounted FRP Rods	74
2.3.5 Near-Surface Mounted FRP Laminate Strips	76
2.3.6 Field Project	83
CHAPTER (3)	
FINITE ELEMENT APPROACH	
3.1. Introduction	91
3.2. Finite Element Method Procedures	91
3.3. Finite Element Methods	93
3.3.1. Three Dimensional Finite Element Method	93 93
3.3.1.1. Constitutive Relations for Three Dimensional Isoparametric Brick Elements	93 93
3.3.1.2. Modeling of Steel Reinforcement	95 95
3.3.1.3. Theoretical Derivations of Embedded Steel Reinforcement	95 95
3.3.1.4. Nonlinear Material Properties	93 97
3.3.1.5. Failure Criterion for Concrete	98
3.3.1.6. Concrete Cracking in Three Dimensions	99
3.3.1.7. Tension Stiffening Model	10
3.3.1.8. Concrete Crushing	10
3.3.2. Two Dimensional Finite Element Method	10
3.3.2.1. Definition of Shape Functions	10.
3.3.2.2. Displacement Matrix	10
3.3.2.3. Stress, Strain and Elasticity Matrices	10:
3.3.2.4. The Finite Element Method Form	10:
3.3.2.5. Jacobian Matrix and Cartesian Shape Function	10.
3.3.2.6. Mindlin Theory	100
3.3.2.7. Isoparametric Degenerated Elements	108
3.3.2.8. Layered Descritzation	111
3.3.2.9. Nonlinear Materials Properties	
3.4. Advantages and Disadvantages of Finite Element Method	113
3.5. Computer Program	117
5.5. Computer 1 togram	118
CHAPTER (4) EXPERIMENTAL PROGRAM	
WARLIAMI LALAM & AND ULLING	

4.1. Introduction

4.2. Test Specimens	100
4.3. Characteristics of the Used Materials	132
4.3.1. Cement	134
4.3.2. Dolomite as Coarse Aggregates	134
4.3.3. Fine Aggregates	135
4.3.4. Water	135
4.3.5. Chemical Admixtures	135
4.3.5.1. Description	135
4.3.5.2. Uses	135
4.3.5.3. Advantages	136
4.3.5.4. Dosage	136
4.3.5.5. Viscosity Agents	137
4.3.6. Fillers	137
4.3.6.1.Silica Fume	137
4.3.6.1.1. Production of Silica Fume	137
4.3.6.1.2. Silica Fume in Egypt	137
4.3.6.1.3. The Role of Silica Fume	138
4.3.6.2. Fly Ash	138
4.3.6.3. Reinforcement Bars	139
4.3.6.4. CFRP Laminate Strip	140
4.3.6.5. GFRP Rod	140
4.3.6.6. Epoxy Adhesive (EUXIT 50)	141
4.4. Concrete Mix Design	141
4.5. Concrete Mixing Procedure	141
4.6. Fresh Self-Compact Concrete Tests	142 142
4.6.1. Slump Flow and (T50cm) Tests	142
4.6.2. J-Ring Test	142
4.6.3. V-Funnel Test	143
4.6.4. U-Box Test	143
4.7. Specimen Preparation	144
4.8. Specimen curing	145
4.9. Preparation of Strengthening Specimens	146
4.9.1. Strengthening Schemes	
4.10. Test Set-Up	146
4.10.1. Supporting System	149 149
4.10.2. Direct Loading System	149
4.11. Instrumentation	150
4.11.1. Mechanical strain gauge	150
4.11.2. Deflectometers	150
4.12. Testing Procedure	150
	150
CHAPTER (5)	
ANALYSIS AND DISCUSSION OF TEST RESULTS	
5.1. Introduction	175
5.2. Deflection	175
5.2.1. Effect of Opening	175 176
5.2.2. Effect of Type of Strengthening Material	176
5.2.3. Effect of Shape of Strengthening Materials	176
5.3. Rotation	177
	178

5.3.1. Rotation at End Support	178
5.3.1.1. Effect of Opening	179
5.3.1.2. Effect of Type of Strengthening Material 5.3.1.3. Effect of Shape of Strengthening Materials	179
5.3.2. Rotation under Load	180
5.3.2.1. Effect of Opening	181
5.3.2.2. Effect of Type of Strengthening Material	181
5.3.2.3. Effect of Shape of Strengthening Materials	182 182
5.4. Cracking Behavior	184
5.4.1. Cracking Load	184
5.4.2. Crack Patterns	185
5.5. Failure Load	186
5.6. Modes of Failure	187
5.7. Ductility 5.8. Energy Absorption	187
5.8. Energy Absorption	188
CHAPTED (6)	
CHAPTER (6) ANALYSIS OF FINITE ELEMENT RESULTS	
6.1. Introduction	22.5
6.2. Finite Element Methods	236
6.2.1. 3-D Finite Element Method	236 236
6.2.1.1. Modeling of Steel Reinforcement	237
6.2.2. 2-D Finite Element Method	237
6.2.2.1. Two-Dimensional Plate Bending Analysis	237
6.2.2.2. Two-Dimensional Plane Stress Analysis	238
6.2.2.3. Modeling of Steel Reinforcement	238
6.3. Analysis of the Tested Strengthened Deep Beams	239
6.3.1. Analysis of Control Beam Using the Different Finite Element Methods	240
6.3.2. Analysis of the Strengthened Beams	240
6.3.3. Deflection Behavior 6.3.4. Stress Distribution	241
6.3.5. Cracking Loads	242
6.3.6. Failure Loads	243
oisio. Landio Lodds	243
CHAPTER (7)	
COMPARISON BETWEEN EXPERIMENTAL AND ANALYTICAL RESULTS	
7.1. Introduction	201
7.2. Deflection Behavior	286
7.3. Cracking Behavior	286
7.4. Failure Loads	288 288
7.5. Comparison between Experimental Result, Egyptian code (ECP 203-2007), ACI 318-02 and Kong Formula for control beam BOC	289