

Biochemistry and Nutrition Department Faculty of Women for Arts, Science and Education Ain Shams University

Potential Antitumorgenic Effect of Garlic (Allium Sativum) Oil in Female Mice Injected With Ehrlich Ascites Carcinoma Cells

Thesis

Submitted to Faculty of Women, Ain Shams University In Partial Fulfillment for the Master of Science Degree (MSc) in Biochemistry and Nutrition

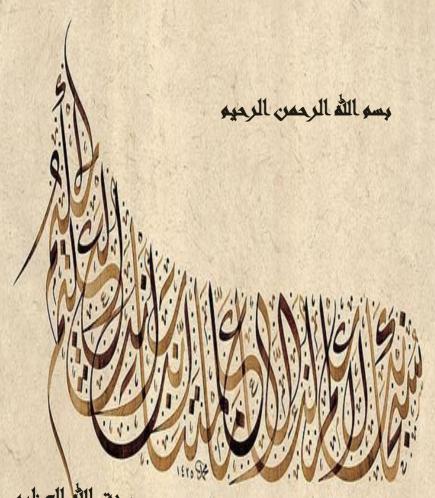
By

Ola Mohamed Samy Ahmad Sadek Helmy

B.Sc. in Biochemistry and Nutrition Biochemistry and nutrition department Faculty of Women for Arts, Science and Education Ain Shams University

Under supervision of Dr. Gehan Salah Eldin Moram

Assistant Professor of Nutrition Biochemistry and nutrition department Faculty of Womenfor Arts, Science and Education Ain Shams University


Dr. Nahla Hussein Ali

Assistant Professor of Nutrition Biochemistry and nutrition department Faculty of Women for Arts, Science and Education Ain Shams University

Dr. Hala Salah Abd El Fatah

Lecturer of Biochemistry and Nutrition Biochemistry and Nutrition Department Faculty of Women for Arts, Science and Education Ain Shams University

2015

البترة (32)

Acknowledgement

First of all and foremost, thanks to **Allah** almighty for giving me the strength and the incentive to peruse this career and who allowed me to have the privilege of doing this work.

I would like to express my deepest most sincere appreciation and gratitude to **Dr. Gehan Salah Eldin Moram,** Assistant Professor of Nutrition, Biochemistry and Nutrition Department Faculty of Women for Arts, Science and Education, Ain Shams University, for her guidance, care and continuous supervision and encouragement; she has been a tremendous mentor for me.

I would also like to deeply thank **Dr. Nahla Hussein Ali,** Assistant Professor of Nutrition, Biochemistry and Nutrition Department, Faculty of Women for Arts, Science and Education, Ain Shams University, for the great help that she offered, and whose directions sat me on the right track, and made the completion of this work possible.

I would like to extend my thanks to **Dr. Hala Salah Abd El Fatah,** Lecturer at Biochemistry and Nutrition Department,
Faculty of Women for Arts, Science and Education, Ain Shams
University for her appreciable contributions to this work.

I am thankful to **Dr. Ola Nada,** Assistant professor of clinical pathology, Al Azhar University for the help that she offered in the histopathological examination carried out in this study.

Last but not least, infinite thanks to **My family** for their continuous encouragement, support and everything else...

Ola Mohamed Samy

Abstract

Cancer is a multifactorial heterogeneous disease and identification and use of effective cancer chemopreventive agents is an important issue in public health-related research. Habitual use of functional foods such as garlic is examined in the battle against cancer and its eradication program The main goal of this study was to evaluate the antitumor and antioxidant potential of garlic oil (GO) in vivo using Ehrlich Ascites Carcinoma (EAC) cell line.

The results of GO analysis using GC-MS revealed that it contained 35.1% diallyl disulphide (DADS), 27.5% diallyl trisulphide (DATS), 17.5% diallyl sulphide (DAS), and varying amounts of many other sulfur containing compounds. The results of the animal trial illustrated that: The antitumor potential of GO was evident through the decrease in tumor weight and volume, the prolongation of the life span of tumor bearing mice (TBM) up to 53.57%, regression in tumor growth rate that reached 36.38 % and inhibition of histone deacetylase (HDAC) enzyme activity up to 9.4%, 14.4% and 18.4% in isolated peripheral blood mononuclear cells, liver and tumor tissues, respectively. EAC injection caused a severe oxidative stress in TBM compared to healthy mice. However, GO successfully elevated the depleted total antioxidant capacity (TAC) to near normal level. Also, reduced glutathione (GSH) was dramatically increased in GO administered mice with its level rising up to 66.3% compared to TBM. Catalase (CAT) and glutathione-S- transferase (GST) activities were both significantly elevated. The increments in CAT activity mounted up to 19.7%, 56% and 68% in serum of GO receiving groups; G4, G5, and G6 respectively, **P<0.05**. The activity of GST was increased by 12.9 %, 42.5 % and 63.8 % respectively at the same manner, **P<0.05**. GO reduced the marked elevation of malondialdehyde (MDA) concentration in GO receiving groups; G4, G5, and G6 to 4.85 ± 0.5 mmol/L, 4.29 ± 0.5 and 3.84 ± 0.34 mmol/L respectively, **P** < **0.05**. Changes in oxidative stress markers measured in liver or tumor tissue homogenates mirrored those measured in blood. Concerning the hematological parameters, GO resulted in a significant reduction in the white blood cells (WBCs) count and elevation of hemoglobin (Hb) concentration as well as the red blood cells (RBCs) count. There were noticeable improvements in blood indices as well. GO resulted in an improved liver function represented by the decrement of liver enzymes' activities and the restoration of blood proteins levels. Histopathological examination of the liver confirmed the results of the biochemical analysis showing the hepatoprotective and antitumor effects of GO.

List of Abbreviations

5-HIAA	5-Hydroxy Indole Acetic Acid
5-HT	5-Hydroxy Tryptamine
5-LOX	5-Lipoxygenase
A/G ratio	Albumin/Globulin Ratio
AA	Ascorbic Acid
AAP	4-Aminophenazone
ACF	Aberrant Crypt Foci
AGE	Aged Garlic Extract
$\mathbf{A}\mathbf{k}_{\mathbf{t}}$	Mouse Thymoma Oncogene-Member of the
	protein kinase B-family
ALT	Alanine Aminotransferase
ANOVA	Analysis of Variance
AST	Aspartate Aminotransferase
ATP	Adonesine Triphosphate
Bcl-2	B-cell lymphoma 2
Bcl-xL	B-cell lymphoma- xL
CAM	Complementary and Alternative Medicine
CAT	Catalase
CCl ₄	Carbon tetrachloride
CDNB	Chloro-2,4-dinitrobenzene
CEB	Cytosol Extraction Buffer
COX-2	Cyclooxygenase-2
CYP 450	Cytochrome P450
DADS	Diallyl Disulfide
DAS	Diallyl Sulfide
DATS	Diallyl Trisulfide
DHBS	3,5-Dichloro-2-HydroxyBenzene Sulfonic acid
DMBA	7, 12-DimethylBenzo[a]Anthracene
DMH	1,2- Dimethylhydrazine
DNA	Deoxyribonucleic Acid

DPPH	1,1-Diphenyl-2-Picryl-Hydrazyl
DTNB	5,5'-Dithiobis 2-Nitrobenzoic acid
DTT	Dithiothreitol
EAC	Ehrlich Ascites Carcinoma
EDTA	Ethylene Diamine Tetracetic Acid
EGFR	Epidermal Growth Factor Receptor
ELISA	Enzyme Linked Immunosorbent Assay
EMEA	European Medicines Evaluation Agency
ESC	Ehrlich Solid Carcinoma
FDA	Food and Drug Administration
Fe- NTA	Ferric Nitrilotri Acetate
GC- MS	Gas Chromatography- Mass Spectrometry
GO	Garlic Oil
GO pr	Garlic oil protection
GO Pr+	Garlic oil protection + treatment
Tr	
GO Tr	Garlic oil treatment
GR	Glutathione Reductase
GSH	Reduced Glutathione
GSH-Px	Glutathione Peroxidase
GSSG	Glutathione Disulfide (oxidized)
GST	Glutathione-S transferase
HAT	Histone acetyl transferase
Hb	Hemoglobin
HCT	Hematocrit
HDACIs	Histone Deacetylase Inhibitors
HDACs	Histone Dacetylases
HER2	Human Epidermal growth factor Receptor 2
HRP	Hydrogen Peroxidase
IKK	Ikappab Kinase
IL	Interleukin
ILS %	Increased Lifespan %

IM	Intramuscular
JNK	Jun N-Terminal Kinase
LDL-C	Low Density Lipoprotein Cholesterol
MAPK	Mitogen-Activated Protein Kinase
MCH	Mean corpuscular hemoglobin
MCHC	Mean corpuscular hemoglobin concentration
MCV	Mean corpuscular volume
MDA	Malondialdehyde
MNU	N-methyl- N-Nitroso Urea
MST	Mean Survival Time
MTW	Mean Tumor Weight
NAD	Nicotinamide Adenine Dinucleotide
NCI	National Cancer Institute
NDEA	Nitrosodiethylamine
NF-kB	Nuclear Factor-kappa B
NTBM	Non- Tumor Bearing Mice
OD	Optical Density
OSCs	Organosulphur Compounds
PARP	Poly (ADP-Ribose) Polymerase
PBMC	Peripheral Blood Mononuclear Cells
PBS	Phosphate Buffer Saline
PTI	Post tumor inoculation
RBCs	Red Blood Cells
RNA	Ribonucleic Acid
ROS	Reactive Oxygen Species
Rpm	Round Per Minute
RT-PCR	Real-Time –Polymerase Chain Reaction
SAC	S-Allylcysteine
SAMC	S-Allylmercaptocysteine
SOD	Superoxide Dismutase
SPSS	Statistical Package for Social Science
STAT3	Signal Transducer and Activator of

	Transcription 3
T/G %	Tumor Growth Inhibition Ratio
TAC	Total Antioxidant Capacity
TBA	Thiobarbituric Acid
TBM	Tumor Bearing Mice
TCA	Trichloroacetic Acid
Th1	T-helper-Type 1 cells
Th2	T-helper-Type 2 cells
TRP	Tryptophan
WBCs	White Blood Cells

List of Contents

Subject	Page
	No.
Introduction	1
Aim of the Work	4
Review of Literature	
1. Cancer	6
1.1 Histone Deacetylase Inhibitor as Novel Target for Cancer	9
1.2 Some dietary phytochemicals affecting histone modification	12
1.3 Ehrlich Ascites Carcinoma Cell Line	14
2. Garlic	15
2.1 Chemical Composition of Garlic	17
2.2 Role of Garlic in Maintaining Health	23
2.3 Epidemiological Studies on Garlic and Cancer	26
2.4 Implication of Garlic in Cancer Prevention	30
2.4.1. Tumor Growth Inhibition	30
2.4.2. Antioxidant Effects of Garlic	37
2.4.3. Effects of Garlic on Carcinogen Activation and Detoxification	40
2.4.4. Effects of Garlic on Histone Modification	43
Materials and Methods	46
Materials	46
Methods	49
1. Determination of the Bioactive Components derived from GO	49
2. EAC Cells Preparation	50
3. Animal Trial	51

	3.1. Blood sample collection	54
	3.2. Tissue sampling	54
<i>4</i> .	Tumor Assessment	55
	4.1. Determination of Tumor Weight	55
	4.2. Determination of Tumor Volume	55
	4.3. Measurement of Tumor Growth Response	55
	4.4. Measurement of Lifespan	55
<i>5</i> .	Biochemical Measurements	56
	5.1. Assessment of Histone Deacetylases Activity	56
	5.2. Assessment of Oxidative Stress Markers	61
	5.2.1. Total Antioxidant Capacity	61
	5.2.2. Reduced Glutathione Content	<i>62</i>
	5.2.3. Glutathione S-transferase Activity	63
	5.2.4. Catalase Activity	65
	5.2.5. Malondialdehyde Level	67
	5.3. Hematological Measurements	68
	5.3.1. Red Blood Cells(RBCs) count	68
	5.3.2. White Blood Cells(WBCs) count	69
	5.3.3. Percentage of Lymphocytes	70
	5.3.4. Hemoglobin concentration	70
	5.3.5. Hematocrit measurement	72
	5.3.6. Erythrocytes indices	72
	5.4. Assessment of Liver Function	73
	5.4.1. Aspartate Aminotransferase activity	73
	5.4.2. Alanine Aminotransferase activity	74
	5.4.3. Alkaline Phosphatase activity	75
	5.4.4. Total Protein concentration	77
	5.4.5. Albumin concentration	<i>78</i>
	5.4.6. Globulin concentration	<i>79</i>
_	5.4.7. A/G Ratio	79
<i>6</i> .	Statistical Analysis	80
<i>7</i> .	Histopathological examination of Liver	80

Results and Discussion	81
1. Bioactive components derived from GO	<i>81</i>
2. Effect of GO protection and/or treatment on tumor assessment in TBM	84
3. Effect of GO protection and/or treatment on HDACs	94
4. Effect of GO protection and/or treatment on oxidative stress markers in healthy and TBM	101
5. Effect of GO protection and/or treatment on Hematological Measurements in healthy and TBM	121
6. Effect of GO protection and/or treatment on liver function in healthy and TBM	135
7. Effect of GO protection and/or treatment on histopathological examination of liver in healthy and TBM	142
Summary	148
Conclusion and Recommendations	152
References	153
Arabic Summary	

List of tables

Table No.	Table title	Page No.
1)	Genetic and acquired cancer related conditions	8
2)	Composition of the commercial pellet diet	47
2-a)	Composition of vitamin mixture	48
2-b)	Composition of mineral mixture	48
3)	Effect of GO administration on tumor weight and tumor volume in TBM groups	89
4)	Effect of GO administration on lifespan and tumor growth inhibition in TBM groups	90
5)	Effect of GO administration on HDAC activity in PBMC, liver tissue and tumor tissue of healthy and TBM groups	98
6)	Effect of GO administration on oxidative stress markers in blood of healthy and TBM groups	111
7)	Effect of GO administration on oxidative stress markers in liver of healthy and TBM groups	115
8)	Effect of GO administration on oxidative stress markers in tumor tissue of healthy and TBM groups	116
9)	Effect of GO administration on hemoglobin concentration, hematocrit and erythrocytes count in healthy and TBM groups	127
10)	Effect of GO administration on leukocytes count, lymphocytes percentage and platelet count in healthy and TBM groups	128
11)	Effect of GO administration blood indices in healthy and TBM groups	129
12)	Effect of GO administration on liver function of healthy and TBM groups	140

List of Figures

Figure no.	Figure Title	Page no.
1)	The role of genes and environment in the development of cancer.	7
2)	Dietary inhibitors of histone modifications	13
3)	Garlic clove	16
4)	Bioconversion pathways of OSCs via natural aging or cellular decomposition.	21
5)	Generation of garlic organosulfur compounds and their representation in various garlic preparations	22
6)	The cell cycle	30
7)	Processes modulated by garlic and OSCs and their molecular targets in relation to multistage cancer development	34
8)	Association of persistent oxidatively generated DNA lesions with cancer	38
9)	Counting viable cells on a hemocytometer using Trypan blue dye	50
10)	Schematic diagram of experimental groups	53
11)	Four layers of blood separated by the Ficoll solution	58
12)	GC-MS analysis of garlic oil	82
13)	Bioactive components derived from GO	83

14)	Solid tumor excised from TBM groups	91
15)	Effect of GO administration on tumor weight (g) in TBM groups	91
16)	Effect of GO administration on tumor volume (mm ³) in TBM groups	92
17)	Effect of GO administration on tumor growth response (%) in TBM groups	92
18)	Effect of GO administration on the lifespan (%) of TBM groups	93
19)	Effect of GO administration on HDAC activity ($\mu M/\mu g$ protein) in isolated PBMC in healthy and TBM groups	99
20)	Effect of GO administration on HDAC activity (μM/μg protein) in nuclear extract of hepatocytes in healthy and TBM groups	99
21)	Effect of GO administration on HDAC activity (μM/μg protein) in nuclear extract of tumor cells in healthy and TBM groups	100
22)	Effect of GO administration on serum TAC (mM/L) in healthy and TBM groups	112
23)	Effect of GO administration on plasma GSH level (mg/dl) in healthy and TBM groups	112
24)	Effect of GO administration on serum CAT activity (U/L) in healthy and TBM groups	113
25)	Effect of GO administration on serum GST activity (U/L) in healthy and TBM groups	113
26)	Effect of GO administration on blood MDA level (mmol/L) in healthy and TBM groups	114

27)	Effect of GO administration on liver GSH level (mg/g) in healthy and TBM groups	117
28)	Effect of GO administration on tumor GSH level (mg/g) in healthy and TBM groups	117
29)	Effect of GO administration on liver CAT activity (U/g tissue) in healthy and TBM groups	118
30)	Effect of GO administration on tumor CAT activity (U/g tissue) in healthy and TBM groups	118
31)	Effect of GO administration on liver GST activity (U/g tissue) in healthy and TBM groups	119
32)	Effect of GO administration on tumor GST activity (U/g tissue) in healthy and TBM groups	119
33)	Effect of GO administration on liver MDA level (mmol/ g tissue) in healthy and TBM groups	120
34)	Effect of GO administration on tumor MDA level (mmol/ g tissue) in healthy and TBM groups	120
35)	Effect of GO administration on RBCs count $(x10^6/\mu L)$ in healthy and TBM groups	130
36)	Effect of GO administration on WBCs count $(x10^3 / \mu L)$ in healthy and TBM groups	130
37)	Effect of GO administration on lymphocytes (%) in healthy and TBM groups	131
38)	Effect of GO administration on hemoglobin (Hb) concentration (g/dl) in healthy and TBM groups	131
39)	Effect of GO administration on MCV (g/dl) in healthy and TBM groups	132
40)	Effect of GO administration on MCH (pg) in	132