

A BI-LEVEL APPROACH FOR CALIBRATING A TRAFFIC SIMULATION MODEL OF GREATER CAIRO REGION

By

Hossameldin Ibrahim Said Mohammed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Civil Engineering - Public Works

A BI-LEVEL APPROACH FOR CALIBRATING A TRAFFIC SIMULATION MODEL OF GREATER CAIRO REGION

By Hossameldin Ibrahim Said Mohammed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Civil Engineering - Public Works

Under the Supervision of

Prof. Dr. Magdy Salah Noureldin

Dr. Hoda Mahmoud Talaat

Professor of Highway, Traffic, and
Airport Engineering
Public Works
Faculty of Engineering, Cairo University

Associate Professor of Highway, Traffic, and Airport Engineering Public Works Faculty of Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

A BI-LEVEL APPROACH FOR CALIBRATING A TRAFFIC SIMULATION MODEL OF GREATER CAIRO REGION

By Hossameldin Ibrahim Said Mohammed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Civil Engineering - Public Works

Approved by the Examining Committee

Prof. Dr. Magdy Salah Noureldin, Thesis Main Advisor Professor of Highway, Traffic, and Airport Engineering Faculty of Engineering, Cairo University

Dr. Hoda Mahmoud Talaat, Member

Associate Professor of Highway, Traffic, and Airport Engineering Faculty of Engineering, Cairo University

Prof. Dr. Laila Salah Eldin Radwan, Internal Examiner Professor of Highway, Traffic, and Airport Engineering Faculty of Engineering, Cairo University

Prof. Dr. Mostafa Amin Abo-Hashema, External Examiner Prof. of Highway Engineering Faculty of Engineering, Fayoum University & Director (Dean) of Egyptian National Institute of Transport, Ministry of Transport, Egypt

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016 **Engineer's Name:** Hossameldin Ibrahim Said Mohammed

Date of Birth: 10/09/1990 **Nationality:** Egyptian

E-mail: hossameldin.said@eng.cu.edu.eg

Phone: +201005457623 Address: Elharam, Giza, Egypt

Department: Civil Engineering – Public Works

Supervisors:

Prof. Magdy Salah Noureldin Dr. Hoda Mahmoud Talaat

Examiners:

Prof. Mostaf Amin Abo-Hashima (External examiner)
Prof. Laila Salah Eldin Radwan (Internal examiner)
Porf. Magdy Salah Noureldin (Thesis main advisor)

Dr. Hoda Mahmoud Talaat (Member)

Title of Thesis:

A BI-LEVEL APPROACH FOR CALIBRATING A TRAFFIC SIMULATION MODEL OF GREATER CAIRO REGION

Key Words:

Traffic Simulation Calibration; Mesoscopic Traffic Simulation.

Summary:

Traffic simulation has proved to be a vital tool for planning and operating transportation systems. This research developed and calibrated a mesoscopic traffic simulation model for the exceptionally large traffic network of Greater Cairo Region (GCR). Open source traffic simulation software "DynusT" was used as a modeling platform. A wide range of field data was consolidated from previous related studies. The calibration procedure involved two levels: theoretical-based, and simulation based calibration. A sensitivity analysis on estimated parameters values was conducted to verify the appropriateness of chosen values. Limited discrepancy was observed between simulation-based link traffic volumes and actual ones in most observed links, with a normalized root mean square error (NRMSE) of 10.6 %.

Acknowledgments

Dedication

Table of Contents

Contents

ACKNO	OWLEDGMENTS	I
DEDIC	ATION	II
TABLE	OF CONTENTS	III
LIST O	F TABLES	V
	F FIGURES	
NOME	NCLATURE	VII
	ACT	
	TER 1: INTRODUCTION	
1.1.	Background	1
1.2.	PROBLEM STATEMENT AND MOTIVATION	1
1.3.	RESEARCH AIM AND OBJECTIVES	1
1.4.	THESIS ORGANIZATION	2
СНАРТ	TER 2 : LITERATURE REVIEW	3
2.1.	Introduction	3
2.2.	MACROSCOPIC TRAFFIC STREAM MODELS	3
2.3.	LOCAL GREATER CAIRO REGION TRAFFIC STREAM MODELS	3
2.4.	TRAFFIC SIMULATION	5
2.5.	TRAFFIC SIMULATION MODELS CALIBRATION	5
СНАРТ	TER 3: RESEARCH METHODOLOGY	7
3.1.	Introduction	7
3.2.	RESEARCH METHODOLOGY OVERVIEW	7
3.3.	TRAFFIC DATA ACQUISITION	9
3.4.	TRAFFIC SIMULATION MODEL DEVELOPMENT	9
3.5.	THEORETICAL-BASED CALIBRATION	10
3.6.	SIMULATION-BASED CALIBRATION	10
3.7.	SENSITIVITY ANALYSIS	11
СНАРТ	TER 4: TRAFFIC DATA ACQUISITION	12
4.1.	Study Area	12
4.2.	OVERVIEW OF ACQUIRED TRAFFIC DATA	12
4.3.	DATA FOR THEORETICAL-BASED CALIBRATION	13
4.3	1.1. Traffic Count Surveys	13
4.3	5.2. FLOATING CAR SURVEYS	14

4.3.	3. Traffic Data Consolidation	17
4.4.	DATA FOR SIMULATION BASED CALIBRATION	19
4.4.	1. Traffic Count Surveys	19
4.4.	2. ORIGIN DESTINATION MATRICES	21
СНАРТ	ER 5 : SIMULATION MODEL DEVELOPMENT	26
5.1.	SIMULATION MODEL DEVELOPMENT OVERVIEW	26
5.2.	TRAFFIC NETWORK PREPARATION	26
5.3.	SIMULATION MODEL PREPARATION	28
5.4.	ORIGIN DESTINATION MATRICES	29
5.5.	Model Error Checking	29
СНАРТ	ER 6: TRAFFIC SIMULATION MODEL CALIBRATION	30
6.1.	Introduction	30
6.2.	THEORETICAL BASED CALIBRATION	30
6.2.	1. ROAD HIERARCHICAL FUNCTIONAL CLASSIFICATION	30
6.2.	2. MODIFIED GREENSHIELD'S MODEL (MGM)	34
6.2.		
6.3.	SIMULATION-BASED CALIBRATION	39
6.3.	1. ANISOTROPIC MESOSCOPIC TRAFFIC SIMULATION (AMTS) MODI	EL39
6.3.	2. GENETIC ALGORITHM FOR SIMULATION-BASED CALIBRATION	40
6.4.	SIMULATION MODEL PERFORMANCE	41
6.5.	Sensitivity Analysis	42
СНАРТ	ER 7 : CONCLUSIONS AND RECOMMENDATIONS	46
7.1.	Conclusions	46
7.2.	RECOMMENDATIONS	47
REFER	ENCES	48
APPENI	DIX A: WORLD BANK TRAFFIC COUNT DATA	50
APPENI	DIX B: SPACE TIME DIAGRAM	77
A DDENII	DIV C. HCA TRAFFIC COUNT DATA	00

List of Tables

Table 2.1: Summary of traffic stream characteristics models developed in Egypt	4
Table 4.1: Traffic count survey locations conducted in Cairo Congestion Study (Wor	:ld
Bank, 2010)	13
Table 4.2: Example of Traffic Count Data Format	15
Table 4.3: Floating car survey routes conducted in Cairo Congestion Study (World	
Bank, 2010) Traffic Data Consolidation	16
Table 4.4: Traffic count survey locations conducted in (JICA, 2006)	20
Table 4.5: OD matrices zone structure	22
Table 4.6: AM peak period OD matrix	24
Table 4.7: PM peak period OD matrix	25
Table 5.1: Roadway network attributes and description	27
Table 6.1: Number of Speed-Density Pairs at Each Data Collection Point	31
Table 6.2: Number of speed density pairs at each road functional class	31
Table 6.3: Parameter values of the models classified by road functional classification	ı 35
Table 6.4: Model 4-01 and 4-02 count locations	38

List of Figures

Figure 3.1: Research Methodology General Framework	8
Figure 3.2: Greater Cairo Region Road Hierarchy	10
Figure 4.1: Administrative and Planning Boundaries in the Study Area (JICA, 2000)	.12
Figure 4.2: Traffic count survey locations conducted in Cairo Congestion Study (Wo	orld
Bank, 2010)	
Figure 4.3: Floating car survey routes conducted in Cairo Congestion Study (World	
Bank, 2010)	17
Figure 4.4: Example of space-time diagram for one route	17
Figure 4.5: Mapping between traffic counts and floating car surveys example	18
Figure 4.6: Speed-density data categorized by road functional classification	19
Figure 4.7: Traffic count survey locations conducted in (JICA, 2006)	21
Figure 4.8: OD matrices zone structure	22
Figure 4.9: Percentage of Traffic occur during am peak period 07:00 am to 11:00 am	23
Figure 4.10: Percentage of Traffic occur during pm peak period 03:00 pm to 07:00 p.	
	23
Figure 5.1: Transportation network obtained from OSM before network reduction	
Figure 5.2: Roadway Network after reduction and adding link attributes using ArcGI	IS
	28
Figure 5.3: DynusT roadway network model	29
Figure 6.1: Speed vs. density data for function class 1	32
Figure 6.2: Speed vs. density data for function class 2	32
Figure 6.3: Speed vs. density data for function class 3	33
Figure 6.4: Speed vs. density data for function class 4	33
Figure 6.5: Modified Greenshield's model	34
Figure 6.6: Model vs. field data for road function class 1	35
Figure 6.7: Model vs. field data for road function class 2	36
Figure 6.8: Model vs. field data for road function class 3	36
Figure 6.9: Model vs. field data for road function class 4	37
Figure 6.10: Model 4-01 vs Model 4-02 data points	38
Figure 6.11: Model CAT 1, 2, and 3	
Figure 6.12: Models 4-01 and 4-02	39
Figure 6.12: Genetic Algorithm Structure	40
Figure 6.14: Genetic Algorithm objective function flowchart	41
Figure 6.15: Model link volumes vs traffic count field data	12

Nomenclature

GCR: Greater Cairo Region MGM: Modified Greenshield's Model

GA: Genetic Algorithm

SQP: Sequential Quadratic Programming

Abstract

Traffic simulation has proved to be a vital tool for planning and operating transportation systems. Traffic simulation models need to be calibrated by adjusting model parameters to ensure the model's ability to reproduce local traffic conditions and serve as a reliable test-bed for evaluating modification scenarios. This research developed and calibrated a mesoscopic traffic simulation model for the exceptionally large traffic network of Greater Cairo Region (GCR). The scope of the study is limited to calibrating traffic stream parameters, while a typical user equilibrium traffic assignment model was adopted. Open source traffic simulation software "DynusT" was used as a modeling platform. A wide range of field data was consolidated from previous related studies. The calibration procedure involved two levels: theoretical-based, and simulation based calibration. In the theoretical-based calibration stage, traffic stream parameters of the modified Greenshield's traffic flow model was estimated using non-linear regression approach. On the other hand, the simulation-based calibration involved the estimation of the Anisotropic Mesoscopic Model parameter using a genetic algorithm optimization approach. A sensitivity analysis on estimated parameters values was conducted to verify the appropriateness of chosen values. Testing results revealed the potential of the adopted calibration approach and the credibility of estimated traffic stream parameters values. Limited discrepancy was observed between simulation-based link traffic volumes and actual ones in most observed links, with a normalized root mean square error (NRMSE) of 10.6 %.

Chapter 1: Introduction

1.1. Background

Traffic Simulation provides a cost-effective, reliable, and robust solution for analyzing increasingly complex real-world transportation problems, such as congestion and traffic safety, that sometimes cannot be solved by conventional traffic analysis means. Traffic simulation models can be divided into 3 main types according to the level of detail they offer. Microscopic traffic simulation models uses a detailed vehicle-based models to describe traffic conditions. On the other hand, macroscopic traffic simulation models implements high level aggregated traffic stream models to explain the behavior of traffic flows.

Mesocopic traffic simulation models represents a middle ground between the two conventional approaches. The use of mesoscopic traffic simulation models avoid the long processing times and labor intensive simulation model development processes with a reasonable level of detail, and hence, is appropriate for large scale traffic networks modeling. To ensure the credibility of traffic simulation platforms, simulation models need to be calibrated by adjusting model parameters to ensure the model's ability to reproduce local traffic conditions and serve as a reliable test-bed for evaluating modification scenarios.

1.2. Problem Statement and Motivation

Egypt, as many other developing countries, suffers from a strained transportation system that fails to keeps pace with the increase in transportation demand. The significant increase in population and car ownership, coupled with an exhausted transportation infrastructure, hinders the country's struggle for an improved economic welfare. Greater Cairo Traffic Network is the largest and most complicated traffic network in the country, with more than 30,000 km of roadways and more than 3.5 million registered vehicle. With the absence of a calibrated network-wide traffic simulation model of Greater Cairo Region (GCR), real consequences of planning/operational modification strategies are difficult to be realized. As such, the need for a fully calibrated traffic simulation platform for GCR is crucial to serve as a creditable decision support tool for future traffic-related decisions.

1.3. Research Aim and Objectives

This research aims to develop and calibrate a mesoscopic traffic simulation model for the exceptionally large traffic network of GCR, using DynusT open source traffic simulation software. The model will serve as a testbed for network wide evaluation of planning/operational modification decisions.

Detailed objectives are:

1) Consolidation of a wide range of field data from previous related studies.

- 2) Developing a replica of GCR roadway network within the simulation environment
- 3) Conducting a theoretical-based calibration to estimate traffic stream parameters of the modified Greenshield's traffic flow model.
- 4) Conducting a simulation-based calibration to estimate the value of the Anisotropic Mesoscopic Traffic Simulation (AMTS) model parameter using a genetic algorithm optimization approach.
- 5) Conducting a sensitivity analysis on estimated parameters values to verify the appropriateness of chosen values by measuring the discrepancies between model and field data.

1.4. Thesis Organization

The thesis is organized as follows:

Chapter 1 includes an introduction to the research, presenting a background about traffic simulation and stating research the objectives and motivation. Chapter 2 provides a literature review of previous studies related to traffic flow theory, traffic simulation, and traffic simulation models calibration techniques.

Chapter 3 presents the research methodology. This chapter summarizes the main steps that have been conducted in the development/calibration of the simulation model starting from the data consolidation to simulation model development, and the description of the bi-level calibration procedure.

Chapter 4 presents the procedure used for acquiring and consolidating data from various previous studies and the preparation of each dataset for the use in the calibration procedure. Chapter 5 includes a detailed procedure creating a replica of GCR roadway network and getting the traffic simulation model up and running.

Chapter 6 firstly, provides a detailed description of the theoretical-based calibration procedure and estimated parameters values. Secondly, it provides a detailed description of the simulation-based calibration procedure, genetic algorithm optimization, and estimated parameter value. Finally, the results of the conducted sensitivity analysis are presented.

Chapter 7 summarizes the research and presents the conclusion, recommendations, and future work.

Chapter 2 : Literature Review

2.1. Introduction

Many studies have been conducted in Greater Cairo Region (GCR) to model the characteristics and behavior of traffic flow. Traffic can be modeled using analytical or simulation approaches. Traffic simulation is an efficient way for modeling traffic networks for measuring network performance for both planning and operation purposes. Traffic simulation can model complex traffic characteristic having the advantage of ease of implementation, flexibility and scalability. In other words, traffic simulation models can reasonably represent traffic conditions in large network sizes for different analysis purposes. Traffic simulation models needs to be calibrated to generate robust results. Traffic simulation models are generally divided into macroscopic, microscopic, and mesoscopic traffic simulation models according to the level of detail they offer in modeling the traffic network. This chapter offers a review of previous studies conducted for modeling traffic flow characteristics in GCR, traffic simulation approaches, and traffic simulation calibration procedures.

2.2. Macroscopic Traffic Stream Models

Traffic stream models aim to describe the relationship between traffic stream parameters that includes flow, speed, and density. The general relationship between the three traffic flow parameters can be described as:

q=k.u (2.1)

Where,

q: traffic flow rate (veh/hr/lane)

k: traffic density (veh/km/lane)

u: speed (km/hr)

Many models have been developed trying to identify a data-driven relationship between two of the three parameters, to fully describe traffic flow at a given section. Every model attempts to fit the field data by a mathematical formula that represents actual traffic conditions. Greenshields, Channing, & Miller (1935) developed the first model to describe the relationship between the speed and density as a linear relationship (Boxill & Yu, 2000). Many models have been developed since then. Greenberg (1959) developed another model that assumed a logarithmic relation between speed and density (Boxill & Yu, 2000). The model has a downside that the model becomes unrealistic when the density value approaches zero. To overcome the limitation of Greenberg's model, Underwood (1961) developed an exponential relationship between speed and density. The Underwood's model has the drawback that it gives unrealistic values of density when the speed approaches zero.

2.3. Local Greater Cairo Region Traffic Stream Models

Many attempts for modeling traffic stream characteristics in Egypt has been conducted since early 1990s. El-adawi (1993) developed two exponential models to describe the relationship between traffic stream parameters. The models were based on