

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING DESIGN AND PRODUCTION ENGINEERING DEPARTMENT

Application of Intelligent Techniques in Wire Cut Process

A Thesis Submitted in Partial Fulfillment for the Requirements of the M. Sc. in Mechanical Engineering

By

Eng. Anas Mohamed Abd Elrahman Ali Supervised by

Prof. Mohamed Abdel Mohsen Sayed Mahdy
Prof. Hesham Aly Abdel Hamed Sonbol
Assoc. Prof. Mohamed Ahmed Awad

Ain Shams University Cairo, EGYPT

Supervisors Committee

Name, Title and Affiliation	Signature
Prof. Mohamed Abdel Mohsen Sayed Mahdy Design and Production Engineering Dept. Faculty of Engineering, Ain Shams University	
Prof. Hesham Aly Abdel Hamed Sonbol Design and Production Engineering Dept. Faculty of Engineering, Ain Shams University	
Assoc. Prof. Mohamed Ahmed Awad Design and Production Engineering Dept. Faculty of Engineering, Ain Shams University	

Examiners Committee

Name, Title and Affiliation	Signature
Prof. Ahmed Mohamed Abdel Aziz Kohail Professor of Production Engineering, Dean of Modern Academy for Engineering and Technology	
Prof. Samy Jemy Ebeid Professor of Production Engineering, Faculty of Engineering, Ain Shams University	
Prof. Hesham Aly Abdel Hamed Sonbol Professor of Production Engineering, Faculty of Engineering, Ain Shams University	

This thesis is submitted as partial fulfillment of M. Sc. Degree in Mechanical Engineering, Faculty of Engineering, Ain Shams University. The author carried out the work included in this thesis, and no Part of it has been submitted for a degree or qualification at any other scientific entity.

Signature

Eng. Anas Mohamed Abd Elrahman Ali

I would like to thank Allah for giving me strength to accomplish this thesis. Special thanks to my supervisors, Prof. Dr. Mohamed Abdel Mohsen Mahdy, Prof. Dr. Hesham Aly Abdel Hamed Sonbol and Associate Prof. Dr. Mohamed Ahmed Awad, Department of Design and Production Engineering; for their precious guidance and constant supervision and discussions throughout working in this thesis and their encouragements.

I would like to express my sincere appreciation to my professors in the engineering field, Prof. Dr. Mohamed Raafat Okelah, Head of Mechanical Engineering Department in Future University in Egypt (FUE) and Prof. Dr. Mahmoud Abd Elrasheed Noseir for their interest and continuous support throughout my work. I am also grateful to all of my friends and colleagues in FUE especially Eng. Amro Saad, Eng. Mohamed Ashraf and Eng. Bahaa eldeen for their advice and support.

Many thanks to Dr. Fouad Mansour and all of the technicians in Nonconventional Machining Laboratory, department of design and production Engineering, Ain Shams University, for their cooperation with me in the various laboratory tasks.

Deepest gratitude to my parents, M. Abd Elrahman and A. M. Helmy, who give me a real love, pray and support. Also to my sisters for their continuous encouragement.

Wire Electro-Discharge Machining (WEDM) has established itself as the most important alternative of non-traditional machining processes to produce complex shapes and contours, without having residual stresses. An experimental work is presented for longitudinal turning process based on electrical discharge machining using the wire electrode for machining steel k316 as an example of poor machineability materials. A rotary spindle is designed with some specifications and mounted on a conventional four-axes WEDM machine to allow generating cylindrical forms.

Several experiments are conducted to study the effect of predominant cutting parameters including five input variables: the depth of cut, gap, rotational speed of workpiece, pulse off time and pulse on time (design variables) on the performance measuring parameters, average surface roughness (Ra) and material removal rate (MRR) as indicators of cost effectiveness and efficiency for the machining process. The experimental work was done for longitudinal turning operation by changing one of the design variables and keeping the others constant to illustrate the effect of each of these variables individually on the responses. Selection of optimum electrical discharge machining parameters combinations for the purpose of obtaining higher cutting efficiency and accuracy is the aim and challenge

task .To achieve this aim, many improvements had been studied in WEDM and still under research as shown in literature review.

Artificial neural network model will be proposed as one of the artificial intelligence techniques to build a model with multi variables for the purpose of predicting the performance measuring parameters accurately as a function of most significant design variables without need for carrying out extra experiments. A neural network with a back-propagation algorithm and a feed forward structure has been developed for this proposed model. The proposed model was trained using experimental data available from experimental work conducted as will be discussed in later chapters. Training and verification of this proposed model had been carried out using experimental data. The network was built and trained using MATLAB Neural Networks Toolbox. To verify the accuracy and generalization of the proposed model, a new set of experimental data that haven't been used during training phase, were introduced to the network as new inputs and we compare outputs from the model with the experimental outputs.

Acknowledgement	I
Abstract	II
Table of Contents	IV
List of Figures	VIII
List of Tables	XIIII
List of Acronyms	XIV
Chapter One Introduction	1
Chapter Two Literature Review	7
2.1 Electrical Discharge Machining (EDM)	7
2.1.1 WEDM machine	10
2.1.2 The Mechanism of Material Removal by	
WEDM	13
2.1.3 Wire Electro-Discharge machine capabilities	
and limitations	15
2.1.4 Electrode	16
2.1.5 Flushing	17
2.1.6 Dielectric fluid	18
2.1.7 Micro machining by WEDM	19
2.1.8 Applications	20
2.1.9 WEDM problems	20
2.1.10 Cylindrical wire electrical discharge	
machining (CWEDM)	25
2.1.11 Wire electric discharge turning (WEDT)	
characteristics	26
2.1.12 CWEDT Applications	28
2.2 Artificial Intelligence Techniques	29
2.3 Artificial Neural Networks	30

2.3.1 Neural network elements	32
2.3.2 Neural networks topologies	33
2.3.2.1 Feed-forward networks	34
2.3.2.2 Recurrent networks	35
2.3.3 Learning methods	35
2.3.4 Multilayer feed-forward neural networks (MLFF)	
and back-propagation (BP)	36
2.3.4.1 The MLFF (MLPs) ANN	36
2.3.4.2 Back-propagation algorithm	37
2.3.5 Neural networks design	38
2.4 Application of ANN in EDM process	39
2.5 Problem statement	42
Chapter Three Experimental Work	44
3.1 Design variables	44
3.1.1 Pulse-on time (Ton)	46
3.1.2 Pulse-off time (Toff)	46
3.2 Response Parameters	47
3.3 Workpiece material	47
3.4 Electrode material	49
3.5 Machine and Measuring Devices	49
3.5.1 CNC wire cutting machine	49
3.5.2 The rotating axis attachment	50
3.5.3 The surface roughness tester	52
3.6 Experiments	52
3.6.1 The experiments for longitudinal feed turning	52
3.6.2 Experimental design	57
3.7 The response measurements	58
3.7.1 Metal Removal Rate (MRR) Measurement	58
3.7.2 Surface Roughness Measurement	58
3.8 Experimental plan of work	58

Chapter Four Proposed Neural Model	60
4.1 Artificial Neural Network	60
4.2 Building of Proposed ANN Model	61
4.3 Training of Network	62
Chapter Five Results and discussion	78
5.1 Experimental Behavior of WEDT process on MRR and Ra	78
5.1.1 Influence of pulse on time (T _{on}) on MRR	79
5.1.2 Influence of pulse off time (T _{off}) on MRR	80
5.1.3 Influence of gap (g) on MRR	81
5.1.4 Influence of depth of cut (a) on MRR	82
5.1.5 Influence of the rotational speed of workpiece (N _{wp}) on MRR	83
5.1.6 Influence of pulse-on time (T _{on}) on Ra	84
5.1.7 Influence of pulse off time (T _{off}) on Ra	85
5.1.8 Influence of the gap (g) on Ra	86
5.1.9 Influence of depth of cut (a) on Ra	87
5.1.10 Influence of rotational speed of workpiece (N _{wp})	
on Ra	88
5.2 Validation of the Proposed Model	89
5.3 Comparisons between proposed ANN model behavior and	
actual behavior	91
5.3.1 Influence of different cutting parameters on predicted	
MRR using ANN model	91
5.3.1.1 ANN Prediction of MRR under influence of	
depth of cut at a given pulse-on time	92
5.3.1.2 ANN Prediction of MRR under influence of	
depth of cut at a given pulse-off time	94
5.3.1.3 ANN Prediction of MRR under influence of	
depth of cut at a given gap	96

5.3.1.4 ANN Prediction of MRR under influence of	
depth of cut at a given rotational speed of	
workpiece	97
5.3.2 Influence of different cutting parameters on	
predicted Ra using ANN model	99
5.3.2.1 ANN Prediction of Ra under influence of depth	
of cut at a given pulse-on time	99
5.3.2.2 ANN Prediction of Ra under influence of depth	
of cut at a given pulse-off time	102
5.3.2.3 ANN Prediction of Ra under influence of depth	
of cut at a given gap	104
5.3.2.4 ANN Prediction of Ra under influence of depth	
of cut at a given rotational speed of workpiece	105
5.4 Ability of the model for predicting MRR values inside and	
outside the range of main training data	107
5.5 New model ability for predicting MRR values inside and	
outside the range after increasing training data	108
Chapter Six Conclusions	110
REFERENCES	112
Appendices	120
Appendix A	120
Appendix B	121
Appendix C	122
Appendix D	128
Appendix E	133
Appendix F	135

Fig. 1.1 Parameters affecting WEDM process performance	3
Fig. 2.1 EDM Concept	8
Fig. 2.2 A schematic view of a WEDM system	11
Fig. 2.3 The sequence of events occurring during one pulse of	
an EDM cycle	14
Fig. 2.4 Overcut in Die-sinking EDM process	21
Fig. 2.5 Spark generation in EDM process	22
Fig. 2.6 Recast layer and heat affected zone in EDM process	22
Fig. 2.7 Principle of a double wire system	23
Fig. 2.8 Self-spinning Wire EDM	24
Fig. 2.9 Shape of the workpiece finished with wire resonance	
frequency	25
Fig. 2.10 Nodal operations for a neural network	31
Fig. 2.11 Neural network operations at a node	32
Fig. 2.12 Typical structures of neural networks with feed-	
forward topology	34
Fig. 2.13 A typical neural network with recurrent topology	35
Fig. 2.14 A general MLFF (MLPs) network	37
Fig. 2.15 MLFF Network with a back-propagation algorithm	37
Fig. 3.1 Graphical representation of EDM sparking cycle	45
Fig. 3.2 Electronica ecocut machine	50
Fig. 3.3 The rotating axis attachment	51

Fig. 3.4 Principal of longitudinal feed turning	53
Fig. 3.5 Significant range of pulse on time (6-10 μs)	54
Fig. 3.6 Significant range of pulse off time (1-5 μs)	55
Fig. 3.7 Significant range of gap (0.04-0.05 mm)	56
Fig. 3.8 Experimental plan of work	59
Fig. 4.1 Multivariable nonlinear process modeling outlines for	
ANN	66
Fig. 4.2 Settings of training Parameters for a trained network	
using Levenberg Marquardt algorithm	68
Fig. 4.3 Connection between layers of proposed model	69
Fig. 4.4 Total average error for MRR vs Number of hidden neuro	ns
	70
Fig. 4.5 Total average error of Ra vs Number of hidden neurons	
	70
Fig. 4.6 Progress of proposed neural network during training	
phase	71
Fig. 4.7 Plot of MSE against number of epochs during training,	
test & validation phases	72
Fig. 4.8 Error histogram for the neural network during training,	
validation & test phases	74
Fig. 4.9 Regression plots between experimental and predicted	
data	76
Fig. 4.10 Neural network architecture	77

Fig. 5.1 Influence of pulse-on times on material removal rate	79
Fig. 5.2 Influence of pulse-off times on material removal rate	80
Fig. 5.3 Influence of gap on material removal rate	81
Fig. 5.4 Influence of depths of cut on material removal rate	82
Fig. 5.5 Influence of rotational speed of workpiece on	
material removal rate	83
Fig. 5.6 Influence of pulse-on times on average surface roughness	84
Fig. 5.7 Influence of pulse-off times on average surface roughness	85
Fig. 5.8 Influence of gap on average surface roughness	86
Fig. 5.9 Influence of depths of cut on average surface roughness	87
Fig. 5.10 Influence of rotational speed of workpiece on average	
surface roughness	88
Fig. 5.11 A plot for material removal rate during validation test	
based on verification experiments	90
Fig. 5.12 A plot for surface roughness during validation test	
based on verification experiments	90
Fig. 5.13 Effect of depth of cut on material removal rate at	
a pulse-on time of 6 μs	92
Fig. 5.14 Effect of depth of cut on material removal rate at	
a pulse-on time of 8 μs	93
Fig. 5.15 Effect of depth of cut on material removal rate at	
a pulse-on time of 10 μs	93

Fig. 5.16 I	Effect of depth of cut on material removal rate at	
	a pulse-off time of 1 μs	94
Fig. 5.17 I	Effect of depth of cut on material removal rate at	
8	a pulse-off time of 3 μs	95
Fig. 5.18 I	Effect of depth of cut on material removal rate at	
8	a pulse-off time of 5 μs	95
Fig. 5.19 l	Effect of depth of cut on material removal rate at	
8	a gap of 0.04 mm	96
Fig. 5.20 l	Effect of depth of cut on material removal rate at	
8	a gap of 0.05 mm	97
Fig. 5.21 l	Effect of depth of cut on material removal rate at	
ä	a rotational speed of 120 rpm	98
Fig. 5.22 l	Effect of depth of cut on material removal rate at	
	a rotational speed of 170 rpm	98
Fig. 5.23 l	Effect of depth of cut on average surface roughness	
	at a pulse-on time of 6 µs	100
Fig. 5.24 l	Effect of depth of cut on average surface roughness	
	at a pulse-on time of 8 µs	101
Fig. 5.25 l	Effect of depth of cut on average surface roughness	
	at a pulse-on time of 10 µs	101
Fig. 5.26 l	Effect of depth of cut on average surface roughness	
	at a pulse-off time of 1 µs	102