MEASUREMENT OF URINARY SUGARS BY HPLC AS A NON-INVASIVE TEST OF INCREASED INTESTINAL PERMEABILITY IN AUTISTIC CHILDREN

Thesis

Submitted for the Partial Fulfillment of M.D. In Clinical and Chemical Pathology

By

Noha Refaat Mohamed

M.B.B.Ch & M.Sc. - Clinical and Chemical Pathology

Under Supervision Of

Prof. Dr./ Nadia Aly Abd El-Sattar

Professor of Clinical and Chemical Pathology Faculty of Medicine, Ain shams University

Prof. Dr./ Eman Abd El-Moniem Al-Gawhary

Professor of Clinical and Chemical Pathology Faculty of Medicine, Ain shams University

Prof. Dr./ Sayeda Abd El-Rahim Saleh

Professor of Clinical and Chemical Pathology Faculty of Medicine, Ain shams University

Prof. Dr./ Heba Ibrahim Essawy

Professor of Neuropsychiatry Faculty of Medicine, Ain shams University

Dr./ Nermine Helmy Mahmoud

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine, Ain shams University

> Faculty of Medicine Ain Shams University 2010

« Acknowledgement **%**

First and foremost, I feel always indebted to **ALLAH**, The Most Graceful and The Most Merciful.

No words can fulfill the feelings gratitude and respect I carry to Prof. Dr./ Nadia Aly Abd El-Sattar, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain shams University, who gave me the opportunity to learn from her faithful and expanded experience. advices Her constant support, encouragement and willingness to teach and educate have pushed me forward throughout this work. I am really honored to be her student and trainee.

Also, I hope to express my deep gratitude to **Prof. Dr./ Eman Abd El-Moniem Al-Gawhary,** Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain

shams University, for her valuable supervision, continuous encouragement and for giving me much of her valuable time and experience.

I am greatly thankful to **Prof. Dr./**Sayeda Abd El-Rahim Saleh, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain shams University, for all her efforts without which, this work may not have been achieved and for her honest supervision, constructive guidance and real interest in the progress of this work.

My respectful thanks are for **Prof. Dr./ Heba Ibrahim Essawy,** Professor of Neuropsychiatry, Faculty of Medicine, Ain shams University, for giving me much of her experience and time during performing this study.

I cannot find adequate words to express my sincere gratitude to **Dr./ Nermine**Helmy Mahmoud, Assistant Professor of

Clinical and Chemical Pathology, Faculty of Medicine, Ain shams University, for her precious help and faithful guidance as well as her continuous review of this manuscript till the smallest detail.

Lastly I express my thanks to my family, my lovely husband, for their support, patience and loving encouragement.

« Contents **%**

Pa	36
List of abbreviations	
List of tables III	
List of figuresIV	
Introduction	
Aim of the work	
Review of literature:	
I. Autism	
A. Historical background 4	
B. Development of diagnostic criteria for autism	
1- Diagnostic statistical manual	
2- Diagnostic rating scales	
C. Clinical features 8	
1. Age at onset8	
2. Deficits in social behavior9	
3. Problems in communication	
4. Unusual patterns of behavior	
5. Unusual responses to sensory experiences	
6. Disturbance of motility14	
7. Intelligence and cognitive deficits	
8. Associated features	
9. Physical characteristics	
10. Associated psychiatric disorders	
11. Eating disturbance	
D. Etiology of autism	
1. Congenital factor	
2. Genetic factors	
3. Immunological factors	
4. Neuroanatomical factors	
5. Biochemical factor	
6. Mitochondrial dysfunctions (MtD)	
7. Low fatty acids	
8. Heavy metals poisoning	
9. Birth season factor	
10 Psychogenic factors	

≈ Contents (Cont.) **∞**

	Page
II. Leaky gut syndrome	40
A- Tight junction structure and composition	41
B- The leaky gut hypothesis	42
C- Gastrointestinal (GI) insults in autistic children	44
1- Gastrointestinal symptoms in autism	44
2- Endoscopic and histologic abnormalities in the	
gastrointestinal tract	45
3- Gastrointestinal dysfunction	47
D- Possible mchanism by which intestinal function may	
become impaired	48
1-Antigens in the diet	
2- Vaccines	
3- Impairment in the GIT development	50
4-Hyperacidity of the intestinal luminal contents due to	
hypo secretion of secretin	51
5- Chronic candidiasis	52
6- Chronic stress	52
7– Medications	53
8-Diet	53
9-Zinc deficiency	53
10- Impaired sulfation	
E- The effect of impaired intestinal function on autistic	
behavior	55
1- Metabolites of gluten and milk interfere with brain	
function	55
2- Vitamin B12 deficiency impairs nervous system	
development	57
F- Assessment of impaired intestinal permeability	58
1- Types of markers	58
2- Possible influencing factors in the measurement of	
intestinal permeability	67
Subjects and methods	70
Results	
Discussion	
Summary and conclusions	
Recommendations	
References	. 102
Arabic summary	

& List of Abbreviations &

⁵¹Cr-EDTA : Chromium-labeled ethylenediaminetetraacetate

5-FU : 5-fluorouracil

ABC : ^{99m}Tc-diethylenetriaminopentaacetate : The Autism Behavior Checklist

a-CGH : Array comparative genomic hybridization **ADHD** : Attention deficit hyperactivity disorder **ADI-R** : Autism Diagnostic Interview-Revised

AJs : Adherens junctions

ASDs : Autistic spectrum disorders

ASDSQ : Autism Spectrum Disorder Screening Questionnaire

ASO : Autism Screening Questionnaire

ATSDR : Agency for Toxic Substances and Disease Registry

BBB : Blood Brain Barrier

BDNF : Brain derived neurotrophic factor CARS : Childhood Autism Rating Scales

CD : Cluster of differentiation CE : Capillary electrophoresis

CGRP : Calcitonin gene-related peptide CHAT : Checklist for Autism in Toddlers

CNS : Central nervous system DHA : Docosahexaenoic acid

DPT: Diphtheria, Pertussis and Tetanus

DSM : The Diagnostics and Statistics Manual of Mental

Disorders

DTA : Docosatetraenoic acid EEG : Electroencephalogram EFAs : Essential fatty acids

EPA : Environment protection agency
FDA : The Food and Drug Administration
FISH : Fluorescent in situ hybridization

fMRI : functional magnetic resonance imaging

FXS : Fragile X syndrome
GABA : γ-amino butyric acid
GC : Gas chromatography
GI : Gastrointestinal
GluR6 : Glutamate receptor 6
HCL : Hydrochloric acid

HIV : Human immune deficiency virus

HPLC : High-performance liquid chromatography

HRP : Horseradish peroxidaseIGF : Insulin like growth factor

IL-2 : Interleukin 2 INF- γ : Interferon- γ INF- α : Interferon- α

₹ List of Abbreviations (Cont.) **₹**

IPT : Intestinal permeability test
IQs : Intelligence Quotients

JAM-1 : Junctional adhesion molecule-1

L/M : Lactulose/Mannitol

LNH : Lymphoid nodular hyperplasia

MLPA : Multiple ligation-dependent probe amplification

MMR : Measles, Mumps and Rubella

MR : Mental retardation MT : Metallothioneins

MtD : Mitochondrial Dysfunctions

MTX : Methotrexate

NADPH : Nicotinamide adenine dinucleotide phosphate

hydrogen

NSAIDs : Non-Steroidal Anti-Inflamatory Drugs NSRIs : None-selective serotonine reuptake inhibitors

NT 4/5 : Neurotrophin 4/5

PDD-NOS : Pervasive Developmental Disorder-Not Otherwise

Specified

PDDs : Pervasive Developmental Disorders

PEGs : Polyethyleneglycols

PET : Positron emission tomography

PL-ADOS: Pre-Linguistic Autism Diagnostic Observation

Schedule

PST : phenylsulfotransferase PUFAs : Polyunsaturated fatty acids

RNA : Ribonucleic acid

ROC : Receiver Operating Characteristic

SD : Standard deviation SFAs : Saturated fatty acids

SIP : Small intestinal permeability
SNPs : Single-nucleotide polymorphisms

SPECT : Single photon emission computed tomography

SSRIs : Selective serotonin reuptake inhibitors

TDC : Transcephalic direct current

TJs : Tight junctions

TNF-α : Tumor necrosis factor-α
 TSC : Tuberous sclerosis complex
 VIP : Vasoactive intestinal peptide

ZO-1 : Zonula occludens-1

≈ List of tables **∞**

	<u>Page</u>
Table 1: DSM-IV behavioral descriptors for the PDDs	7 -
Table 2: Autism associated with premature births and pregnancy complications.	19 -
Table 3: Clinical characteristics of autistic patients and healthy controls	82 -
Table 4: Descriptive and comparative statistics of the various studied parameters in all austistic patients versus healthy control group using student's t-test	83
Table 5: Descriptive and comparative statistics of the various studied parameters in mild to moderate and severe autistic patients versus healthy control group using student's t-test	84
Table 6: Descriptive and comparative statistics of the different studied parameters in severe autistic patients versus mild to moderate autistic patients using student's t-test	85
Table 7: Correlation study between lactulose recovery %, mannitol recovery % and L/M recovery ratio in autistic patients using Pearson's correlation coefficient test (r)	86
Table 8: Diagnostic performance of lactulose recovery (%) and L/M recovery ratio in all autistic patients versus healthy control group	87 -
Table 9: Diagnostic performance of L/M recovery ratio for discriminating patients with severe autism from those with mild to moderate degree	88 -

≈ List of figures **≫**

	<u>Page</u>
Figure 1: Major brain structures implicated in autism	24 -
Figure 2 : Tight junction proteins	41 -
Figure 3: Endoscopic view of ileal lymphoid nodular hyperplasia(LNH)	45 -
Figure 4: Hisological view of Reactive follicular hyperplasia	47 -
Figure 5 : HPLC instrumentation diagram	63 -
Figure 6: Schematic diagram of gas chromatograph	64 -
Figure 7: Schematic diagram of Capillary electrophoresis	66 -
Figure 8: A chromatogram sowing separation of a mixture of mannitol and lactulose standards using reversed phase HPLC with refractive index detector	75 -
Figure 9: ROC curve analysis showing the diagnostic performance of lactulose recovery (%) and L/M recovery ratio	89 -
Figure 10: ROC curve analysis showing the diagnostic performance of L/M recovery ratio in discriminating mild to moderate from severe cases	90 -

INTRODUCTION

Autism is the most prevalent of a subset of disorders organized under the umbrella of pervasive developmental disorders (PDDs) usually presented within the first three years of infancy. It is a life long neurological disorder affecting as many as 1 in 500 children, primarily strikes males. Male to female ratio is about 4: 1. On the other hand, severer forms of autism are more prevalent in females (*White*, 2003). It has been found now to be more prevalent than childhood cancer, diabetes and Down syndrome (*Geier and Geier*, 2005).

Autism is not a disease but a syndrome with multiple non-genetic and genetic causes. It is characterized by profound deficits in language, communication, and socialization, resistance to learning, and displays of stereotypical behavior. One out of three autistic children experiences epileptic seizures. Also, the disease is accompanied by mental retardation in three out of four patients (*Rebecca et al.*, 2004).

The etiology of autism is still unknown. But it is generally accepted that it is caused by abnormalities in the brain structure or function. Abnormal electroencephalogram (EEG) results can be found in about 50% of individuals with autism, particularly in those with lower IQs. These abnormalities are nonspecific and usually are bilateral and diffuse. Some studies

postulated that measles, mumps and rubella (MMR) vaccination might be causally linked with autism (*Kaye*, 2001).

One of the postulated causes of autism is increased intestinal permeability (Leaky gut), which was found in 43% of autistic patients. There are many reasons for this problem, such as, viral infection (measles), yeast infection (over growth of candida albicans), and a reduction in phenylsulfotransferase (PST) which lines intestinal tracts and protects it from leakiness. There is also some speculation that heavy metals in the intestinal tract lead to infection which in turn can cause leaky gut. As a result of the leaky gut, the digestion products of natural foods such as cow's milk and bread are able to enter the blood stream and induce antigenic responses. Moreover, they can pass through the blood brain barrier and produce a negative impact on the brain development (*Horvath and Perman*, 2002).

The standard test for leaky gut syndrome is the mannitol and lactulose test. Both are water soluble molecules that the body can not use. Mannitol is easily absorbed by people with healthy intestinal lining. Lactulose is a larger molecule and is only slightly absorbed. A person drinks a solution containing both mannitol and lactulose. Urine is collected for six hours and the amount present in urine reflects how much was absorbed by the body. A healthy test shows high levels of mannitol and low levels of lactulose. If high levels of both molecules are found, it indicates a leaky gut condition (*D'Eufemia et al.*, 1996).

AIM OF THE WORK

The aim of the present study is to detect the increased intestinal permeability in autistic children by using the convenient and non-invasive lactulose/mannitol test which assesses mucosal integrity of the small bowel in children.

I. AUTISM

A. Historical Background:

In (1943) Kanner described a group of 11 children with a previously unrecognized disorder. He noted a number of characteristic features in these children, such as an inability to develop relationships with people, extreme aloneness, a delay in speech development, and non communicative use of speech. Other features included repeated simple patterns of play activities and islets of ability. He described these children as having "come into the world with innate inability to form the usual, biologically provided affective contact with people". Despite the variety of individual differences that appeared in the case descriptions, he believed that only two features were of diagnostic significance, autistic aloneness and obsessive insistence on sameness. He adopted the term early infantile autism to describe this disorder and drew attention to the fact that its symptoms were already evident in infancy. In describing these children, he used the word "autism" from the Greek word "autos" meaning "self". Kanner's choice of "autism" perhaps had only been used once before in the field of disabilities and that in reference to schizophrenia.

During the next decade, clinicians in the United States and in Europe reported patients with similar features. However, controversy continued over the definition of the disorder because the name autism was ill chosen (Despert, 1951 and

Van Krevelen, 1952). It led to confusion with Bleuler (1950) who used the same term to describe schizophrenia in adults. This confusion led many clinicians to use terms such as childhood schizophrenia, borderline psychosis, symbiotic psychosis, and infantile psychosis as interchangeable diagnoses. In an attempt to clarify the confusion, Eisenberg and Kanner (1956) reduced the essential symptoms to two: extreme self-isolation and pre-occupation with the preservation of sameness. They also expanded the age of onset to the first 2 years of life.

In (1964) Rimland published his book "Infantile autism: The syndrome and its implications for a neural theory of behavior", which broke the ground in the area of autism because it debunked the assumption that autism was the result of bad parenting and helped establish autism as a true neurological disorder. It was not until 1971 that autism was finally distinguished from childhood schizophrenia. It is clear that autism and schizophrenia are two distinct disorders, but sometimes a child with autistic disorder can develop co-morbid schizophrenia (Kaplan and Sadock, 1998).

B. Development of Diagnostic Criteria for Autism:

1- <u>Diagnostic Statistical Manual:</u>

The Diagnostics and Statistics Manual of Mental Disorders (DSM) is the standard by which autism spectrum disorders (ASDs) are diagnosed in the United States. Autism was not included as a separate diagnostic condition in the