Role of Surgical Intervention in The Management of Diabetes Mellitus

Essay

Submitted for partial fulfillment of master's degree in general surgery

Presented by:

Kyrillos Georges Takawy

M.B.B.Ch

Supervised by:

Prof. Dr. Abd El Rahman Mohammad El Maraghy

Professor of General Surgery

Faculty of Medicine - Ain Shams University

Prof. Dr. Wafi Fouad Salib

Assistant Professor of General Surgery

Faculty of Medicine - Ain Shams University

Dr. Ramy Mikhael Nageeb

Lecturer of General Surgery

Faculty of Medicine - Ain Shams University

Faculty of Medicine

Ain Shams University

2016

Thanks to God first and foremost. I feel always indebted to God, the most kind and the most merciful.

I am profoundly grateful to **Prof. Dr. Abd El Rahman Mohammad El Maraghy**, Professor of General and
Endocrine Surgery, Faculty of Medicine, Ain shams
University for his close and kind supervision, constructive
criticism, meticulous revision and continuous advice
throughout this work. He gave our work its accuracy by his
great efforts & help.

I would like to express my sincere and deepest gratitude to **Prof. Dr. Wafi Fouad Salib**, assistant professor of General Surgery, Faculty of Medicine, Ain shams University, for his attitude, help, and support. I really appreciate every effort he made to bring this work in the appropriate shape.

I would like to express my gratefulness and respect to **Dr. Ramy Mikhael Nageeb**, Lecturer of General Surgery, Faculty of Medicine, Ain shams University, for his moral and scientific support and for giving me the honor of working under his supervision and valuable guidance.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.

List of Contents

P	age
Acknowledgement	_
List of abbreviations	
List of figures	
Introduction	1
Aim of work	5
Review of Literature:	
* Anatomical Facts	6
- Stomach	6
- Small Intestine	17
- Pancreas	35
* Pathophysiology of diabetes mellitus	51
* Diagnosis of diabetes mellitus	56
* Non Surgical Management of Diabetes Mellitus	
* Pancreas transplantation	67
* Beta cells transplantation	83
* Role of Stem Cells in Management of	
Diabetes Mellitus	95
* Role of Bariatric Surgery In Treatment	
of Type 2 Diabetes Mellitus	104
Summary	126
References	128
Arabic summary	

List of Abbreviations

ADA : American Diabetes Association

BMI : Body Mass Index

BPD : Biliopancreatic Diversion
CIT : Clinical Islet Transplantation

DCCT : Diabetes Control and Complications Trial

DM : Diabetes Mellitus

DPP-4 : Dipeptidyl peptidase IV ESCs : Embryonic Stem Cells

EWL : Excess weight loss

FFA : Free Fats Acids

FPG : Fasting Plasma Glucose

GAD : Glutamic Acid Decarboxylase

GIP : Glucose-Dependent Insulinotropic

Polypeptide

GIPR : Gastric Inhibitory Polypeptide

GLP-1 : Glucagonlike Peptide-1
HbA1c : Glycated Hemoglobin
HDL : High Density Lipoprotein

HLA DR : Human Leukocyte Antigen

antigen D Related

IA2 : Islet Antigen 2

IEQ : Islet Equivalents Quantification

IFG : Impaired Fasting GlucoseIGT : Impaired Glucose Tolerance

IL : Interleukine

LADA : Latent Autoimmune Diabetes of Adults

LSG : Laparoscopic Sleeve Gastrectomy

MHC : Histocompatibility ComplexNEFAs : Nonesterified Fatty Acids

List of Abbreviations (Cont.)

NGSP : National Glycohemoglobin Standardization

Program

NICE : National Institute for Health and Clinical

Care Excellence

NPH : Neutral Protamine Hagedorn
OGTT : Oral Glucose Tolerance Test

OHS : Obesity Hypoventilation Syndrome

OSA : Obstructive Sleep Apnea

OXM : Oxyntomodulin

PAK : Pancreas-After-Kidney transplant

PDRI : Pancreas Donor Risk Index

PSCs : Pluripotent Stem Cells

PTA : Pancreas Transplant Alone

PYY : Peptide YY

RYGB : Roux-En-Y Gastric Bypass

SGLT-2 : Selective Sodium-Glucose Transporter-2

SNPs : Single-Nucleotide Polymorphisms

SPK : Simultaneous Pancreas and Kidney

transplant

T2DM : Type 2 Diabetes Mellitus

TGFb : Transforming Growth Factor Beta

TNF : Tumour Necrosis Factor

TZDs : Thiazolidinediones

WHO : World Health Organization

List of Figures

Fig.	Title	Page
1	Parts of stomach.	7
2	Gastric relations.	11
3	Arterial supply of stomach.	12
4	Lymphatic drainage of stomach.	14
5	The distribution of the vagal nerves to stomach.	16
6	Parts of duodenum.	18
7	Relations of the duodenum.	23
8	Arterial supply of the duodenum.	25
9	Typical cross sections of jejunum and ileum.	29
10	Cross section of jejunum (A) and ileum.	29
11	The superior mesenteric artery and its branches.	31
12	Relations of the pancreas.	35
13	Parts and anterior relations of the pancreas.	40
14	Variations in the ductal anatomy of the pancreas.	42
15	Arterial supply of the pancreas.	44
16	Venous drainage of the pancreas.	45
17	Exocrine pancreas (Acinar cells).	49
18	Endocrine pancreas (Islet of Langerhans)	50
19	Pancreatic transplantation with enteric drainage and	74
20	systemic vascular drainage (iliac Y graft anastomosis)	75
20	Pancreatic transplantation with portal drainage	75
21	Pancreatic transplantation with Bladder drainage	75
22	Human pancreatic islet manufacturing and	88
	transplantation.	
23	Steps in the islet manufacturing process.	89
24	Immunosuppressive protocol associated with	94
	improved islet engraftment	
25	Promises and pitfalls of macroencapsulation devices	102
	for the delivery and protection of endogenously	
	produced b-cells.	
26	Roux-En-Y Gastric Bypass.	107

List of Figures (Cont.)

Fig.	Title	Page
27	Adjustable Gastric Band.	108
28	Biliopancreatic diversion with duodenal switch.	110
29	Sleeve gastrectomy.	111

Since its earliest description several thousand years ago, diabetes has remained a chronic progressive disease. Diabetes mellitus is a devastating and complex metabolic disease, expected to affect over 500 million people worldwide by the year 2030 (Abu-Rmeileh et al., 2013).

This increasing prevalence is a testament to improvement in managing diabetes-related complications, as well as our global "modernization" and the accompanying metabolic derangements. Diabetes is now ranked as the sixth leading cause of death by disease in the U.S, in many places it ranks far higher *(Francesco et al., 2009)*.

There are two main forms of diabetes. Type 1 diabetes mellitus (T1DM), in which there is insulin deficiency due to autoimmune-mediated destruction of pancreatic β -cell islets, and exogenous insulin is essential for survival and prevention of ketoacidosis. Type 2 diabetes mellitus (T2DM), in which either insulin resistance or abnormal insulin secretion may predominate, and if diet alone or oral hypoglycemic agents is not enough for control of blood glucose levels, exogenous insulin may be used. The T2DM accounts for over 90% of all cases (A. Maleckas et al., 2015).

Diet modification and oral hypoglycemic medications have proven to be inadequate, whereas insulin therapy only solves the problem temporarily. In a U.K. prospective diabetes Study, diabetic patients were treated with diet modification, metformin, sulfonylurea, or insulin. Consistent with the progressive nature of diabetes, monotherapy was

abandoned in 75% of the patients studied in a follow-up of 9 years. Even with the newest pharmaco-therapies, patients continue to develop macro- and microvascular with complications, also it is associated increased cardiac and stroke related kidnev deaths. failure. of blindness. and 60% lower limb nontrauma amputations (Turner et al., 2009).

An alternative option to achieve near normoglycaemia in diabetic patients type I is transplantation of the whole (vascularised pancreas pancreas transplantation). Some would argue that this perhaps a complicated approach when only the islet cells physiological levels of blood are needed to restore glucose, but perhaps more importantly pancreas transplantation has an appreciable high rate of morbidity and mortality compared with kidney transplantation alone .With these factors in mind investigators have tried to isolate and transplant individual islet of Langerhans cells **(Kimber et al., 2011)**.

Stem cells hold great promise for pancreatic beta cell replacement therapy for diabetes. The proof-of-principle that cellular transplants of pancreatic islets, which contain insulin-secreting beta cells, can reverse the hyperglycemia of type 1 diabetes has been established, and there is now a need to find an adequate source of islet cells. Human embryonic stem cells can be directed to become fully developed beta cells and there is expectation that induced pluripotent stem (iPS) cells can be similarly directed. iPS cells can also be generated from patients with diabetes to allow

studies of the genomics and pathogenesis of the disease. Some alternative approaches for replacing beta cells include finding ways to enhance the replication of existing beta cells, stimulating neogenesis (the formation of new islets in postnatal life), and reprogramming of pancreatic exocrine cells to insulin-producing cells (*Weir GC et al., 2011*).

Type 2 diabetes is a multifactorial disorder and obesity is considered the most important risk factor. The prevalence of obesity among adults with diagnosed diabetes is over 50 %, and the prevalence of overweight is over 80 %. It has been estimated that the risk for developing type 2 diabetes is increased 93-fold in women and 42-fold in men who are severely obese (BMI ≥35) in coparison with those who have healthy weight (*Karen Meyvis et al., 2013*).

Given this information, weight loss is one of the most important treatment strategies to obtain good glycemic control (glycated hemoglobin [HbA 1c] <7 %). Intentional weight loss of at least 5 % to 10 % of bodyweight has repeatedly been shown to improve glycemic control, lipid profile, blood pressure and cardiovascular risk profiles in obese subjects with type 2 diabetes (*Wing et al., 2011*).

Weight loss has influence on control of T2DM. Despite weight loss, short-term (7 days) 50% caloric restriction can increase insulin sensitivity and insulin secretion. Moreover, it was observed that metabolic control worsens with increasing total calorie amount even if weight loss is maintained. Caloric restriction may partially explain rapid improvement in blood glucose after bariatric surgery, but other proposed mechanisms may also play an important role (A. Maleckas et al., 2015).

Studies have shown that after bariatric surgery, blood glucose may return to normal without medication in up to three out of four people with type 2 diabetes. Others are able to reduce their diabetes medication. Improvement in blood glucose is likely to be greatest in people who have only had type 2 diabetes for a short time, before insulin production is significantly reduced. With combination procedures which operate on the small intestine, such as gastric bypass, there appear to be hormonal effects apart from weight loss that result in a rapid decrease in blood glucose levels and improved diabetes control within days of surgery. A return to normal blood glucose levels is more likely with these procedures than with gastric banding, however, they also have a higher risk of complications and nutritional deficiencies (Zimmet P et al., 2011).

Aim of the work

Aim of the work

The aim of this essay is to review the role of different surgical procedures as a new modality in treatment of both types of diabetes mellitus, and to assess their outcome.

Anatomical Facts

STOMACH

The stomach is the widest part of the alimentary tract and lies between the oesophagus and the duodenum. The stomach is situated in the upper abdomen, extending from the left upper quadrant downwards, forwards and to the right, lying in the left hypochondrium, epigastrium and umbilical regions. It occupies a recess beneath the diaphragm and anterior abdominal wall bounded by the upper abdominal viscera on either side. The peritoneal surface of the stomach is interrupted by the attachments of the greater and lesser omenta, which define the greater and lesser curvatures and separate the anteriorand posterior surfaces (Csendes and Burgos, 2010).

PARTS OF THE STOMACH (Fig. 1)

For descriptive purposes, the stomach can be divided into a fundus, body, pyloric antrum and pylorus by artificial lines drawn on its external surface. The internal appearance and microstructure of these regions vary. The fundus is dome-shaped and projects above and to the left of the oesophageal opening (cardiac (cardial) orifice) to lie in contact with the left dome of the diaphragm; it lies above a horizontal line from the cardiac notch to the greater curvature (*Didio and Anderson, 2011*).

The body extends from the fundus to the angular incisure (incisura angularis), a constant external notch at the

lower end of the lesser curvature. The cardia is the region of the stomach adjacent to the oesophageal opening. A line drawn from the angular incisure to an inconstant indentation on the greater curvature defines the lower boundary of the body. The pyloric antrum extends from this line to where the stomach narrows to become the pyloric canal (1–2 cm long), which terminates at the pyloric orifice (Didio and Anderson, 2011).

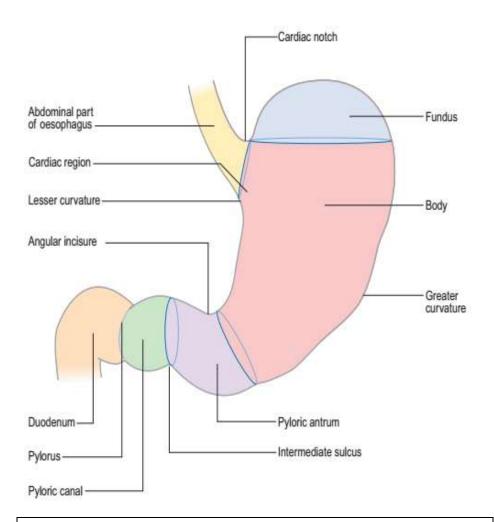


Figure 1: Parts of stomach *Didio and Anderson, 2011*

GASTRIC RELATIONS (Fig. 2)

Gastric curvatures

Lesser curvature

The lesser curvature extends between the cardiac and pyloric orifices and forms the medial border of the stomach. It descends from the medial side of the oesophagus in front of the decussating fibres of the right crus of the diaphragm, curves downwards and to the right, and lies anterior to the superior border of the pancreas. It ends at the pylorus, just to the right of the midline. In the most dependent part, there is typically a notch, the angular incisure, whose position and appearance vary with gastric distension. The lesser omentum is attached to the lesser curvature and contains the right and left gastric vessels (*Csendes and Burgos*, 2010).

Greater curvature

It starts from the cardiac notch, formed between the lateral border of the abdominal oesophagus and the fundus of the stomach, and arches upwards, posterolaterally and to the left. Its highest convexity, the apex of the fundus, is approximately level with the left sixth rib anteriorly but varies between individuals and with respiration. From this point, it sweeps inferiorly and anteriorly, slightly convex to the left, almost as far as the tenth costal cartilage in the supine position, where it turns medially to end at the pylorus in the transpyloric plane at the lower border of the