ASSESSMENT AND CONTROL OF SEED-BORNE BACTERIA OF SOME CROPS OF FAMILY Cucurbitaceae

By

KHALED AHMED MOHAMED ZAYED

B.Sc. Agric. Sc. (Plant Pathology), Ain Shams University, 1998 M.Sc. Agric. Sc. (plant Pathology), Ain Shams University, 2004

A thesis submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Agricultural science (Plant Pathology)

Department of Plant Pathology Faculty of Agriculture Ain Shams University

Approval Sheet

ASSESSMENT AND CONTROL OF SEED-BORNE BACTERIA OF SOME CROPS OF

FAMILY Cucurbitaceae

By

KHALED AHMED MOHAMED ZAYED

B.Sc. Agric. Sc. (Plant Pathology), Ain Shams University, 1998 M.Sc. Agric. Sc. (plant Pathology), Ain Shams University, 2004

Thi	s thesis for Ph.D. degree has been approved by:
Dr.	Mohamed Atef Sallam
	Prof. of plant Pathology, Faculty of Agriculture, Assiu
	University.
Dr.	Hemmat Mohamed Abdelhady
	Prof. of Microbiology, Faculty of Agriculture, Ain Shame
	University.
Dr.	Wafaa Mohamed Abd El-Sayed
	Prof. of plant Pathology, Faculty of Agriculture, Ain Shame
	University.
Dr.	Nagy Yassin Abd El-Ghafar
	Prof. of plant Pathology, Faculty of Agriculture, Ain Shame
	University.

Date of Examination: 1/12/2010

ASSESSMENT AND CONTROL OF SEED-BORNE BACTERIA OF SOME CROPS OF

FAMILY Cucurbitaceae

By

KHALED AHMED MOHAMED ZAYED

B.Sc. Agric. Sc. (Plant Pathology), Ain Shams University, 1998 M.Sc. Agric. Sc. (plant Pathology), Ain Shams University, 2004

Under the supervision of:

Dr. Nagy Yassin Abd El-Ghafar

Prof. of Plant Pathology, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Wafaa Mohamed Abd El-Sayed

Prof. of Plant Pathology, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University

Dr. Ibrahim Hafez El-Abbasi

Head of Research, Plant Pathology Research Institute, Agriculture Research Center.

ABSTRACT

Khaled Ahmed Mohamed Zayed: Assessment and Control of Seed-borne Bacteria of Some Crops of Family *Cucurbitaceae*. Unpublished Ph.D. Thesis, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University, 2010.

Seed samples of watermelon, muskmelon, squash, cucumber and pumpkin which obtained from different countries such as Netherland, USA, France, Spain, Japan, England, China, India, Israel, Italy, Greece, Chili and Egypt were recorded infection through 2005-2007 seasons. Cantaloupe samples recorded no infection during testing seasons. The highest infection was recorded with muskmelon samples through 2005-2007 seasons compared with the other crops, while watermelon and squash samples were showed a moderately infection compared with the other crops. Also, squash and cucumber samples which obtained from USA recorded infection through the three seasons, but the squash samples were more infected than the cucumber samples. According to morphological, cultural, physiological and pathogenicity characters; all isolates were identified as follows: Pseudomonas syringae pv. lachrymans and Xanthomonas campestris pv. Campestris, Erwinia chrysanthemi and Bacillus subtilis.

Population of pathogenic bacteria as externally was more effective than their population as internally on cucumber seeds, squash and watermelon samples population of *Pseudomonas* sp. and *Xanthomonas* sp. on and/or in all tested samples which obtained from Egypt, USA and Netherland. Population of *Pseudomonas* sp. was the most effective compared with other pathogenic bacteria. Mean while, population of *Pseudomonas* sp. was more detected on and/or in cucumber samples than the other seeds samples, but *Xanthomonas* sp. was more detected on and/or in squash samples than other seed

samples. Cucumber seeds were more efficiency than watermelon and squash seeds to borne and/or transmit pathogenic bacteria to seedling. Efficiency of transmission was more severe with seed samples which obtained from USA and Egypt than Netherland samples. Application of chemical and volatile compounds lead to decrease the percentage of infection compared with the control.

Volatile compound were more efficiency than chemical compounds to disease control. Chloroform and acetic acid as a volatile compounds or streptomycin and chloramphenicol as a chemical compounds were the most effective treatments to control the disease compared with the compounds.

Plasmacluster ions showed a great effect in inhibiting the bacterial growth and the population of pathogenic bacteria on cucumber seeds compared to control. Plasmacluster efficiency was increased with the increasing of the exposure period.

Key words: seeds, angular leaf spot, *Pseudomonas lachrymans*, chloramphenicol, koucide 101, oxychloride copper, streptomycin, acetic acid, acetone, chloroform, ethanol, Methanol, Plasmacluster ions.

ACKNOWLEDGEMENET

Praise be to "Allah", who guided us to this; and in way could we have been guided, unless "Allah" has guided us.

All praise and thanks is due to **Allah**, the lord of the worlds, and peace and blessings be upon our prophet Muhammad, his kith, kin and all who follow in their footsteps until the Day of Judgment.

In fact, there is no words can be expressed of my great appreciation and gratitude to my constructors **Prof. Dr. Nagy Y. Abd El-Ghafar,** Prof. of Plant Pathology, Faculty of Agric., Ain Shams Univ., Cairo, **Prof. Dr. Wafaa Mohamed Abd El-Sayed**, Prof. of Plant Pathology, Faculty of Agric., Ain Shams Univ., Cairo and **Dr. Ibrahim H. El-Abbasi**, Chief Researcher - Plant Pathology Research Institute Agriculture Research Center (ARC), Giza. I'm asking **Allah** to reward them on their efforts.

Acknowledgment must be forward to staff members of Plant Pathology Institute in Agriculture Research Center (ARC), Giza for their kind full helps and cooperation.

Special thanks and deep gratitude must be forward to **my family** for their help and support.

Finally, all praise and thanks is due to **Allah**, most high.

CONTENTS

	Page
List of Tables	IV
List of Figure	VII
List of Sheets	X
1- INTRODUCTION	1
2- REVIEW OF LITERATURE	3
Economic importance	3
Disease symptoms	3
The causal agent	4
Disease control	4
Chemical treatments	4
Plasma air	10
3- MATERIAL AND METHODS	12
1: Sampling	12
2: Isolation	12
2.1: from seeds	12
2.2: from seedlings	12
3: Identification	13
3.1: cultural and morphological characteristics	13
3.2: Biochemical and physiological characteristics	13
3.3: Pathogenicity test	14
4: Determination of pathogenic bacteria population	14
4.1: As externally	14

4.2: As internally	1.
5: Transmission of pathogenic bacteria by cucurbits seeds	1.
5.1: Naturally infected seeds	1:
5.2: Artificially inoculation of seeds	1:
6. Disease management	10
6.1: Chemical compounds	10
6.2: Volatile compounds	1
6.3: Disease assessment	1
6.4: Effect of chemical and volatile compounds on plant	
parameters and seeds germination	1
7. Plasmacluster ions treatment	1
7.1. Effect of Plasmacluster ions on growth of pathogenic	
bacteria (in vitro)	1
7.2. Effect of Plasmacluster ions on population of	
pathogenic bacteria to artificially inoculated seeds	1
8. Statistical analysis	1
9. The media and buffers used in this investigation	1
4- RESULTS	2
Detection of pathogenic bacteria on and/or in seed samples of cucurbits	2
2. Identification of bacterial isolates	2
2.1: Morphological and cultural characters	2
2.2: Biochemical characters	2
3. Population of pathogenic bacteria on and/or in cucurbits seeds	3
4. Efficiency of cucurbits seeds to borne and/or transmit	
pathogenic bacteria	3
5. Disease management	3
5.1. Effect of chemical and volatile compounds on disease	
r	

percentage of naturally infected seeds	44
5.2. Effect of chemical and volatile compounds on disease	
percentage with artificial seeds inoculation	45
5.3. Effect of chemical and volatile compounds on seeds	
germination and growth of cucumber seedlings	45
5.4. Effect of Plasmacluster ions on the bacterial growth	69
5.5. Effect of Plasmacluster ions on disease severity of	
artificially inoculated seeds	69
5- DISCUTION	73
6- SUMMURY	7 9
7- REFERENCES	84
8- ARABIC SUMMURY	

LIST OF TABELS

		Page
Table (1)	Survey of infested samples of cucurbits seeds which collected from different locations and different hosts during 2005 season	24
Table (2)	Survey of infested samples of cucurbits seeds which collected from different locations and different hosts during 2006 season	25
Table (3)	Survey of infected samples of cucurbits seeds which collected from different locations and different hosts during 2007 season	26
Table (4)	Pathogenicity test for bacterial isolates which isolated from seed samples of cucurbits which collected from different countries	29
Table (5)	Some morphological and cultural characters of bacterial isolates which isolated from seed samples of cucurbits from different countries	30
Table (6a)	Biochemical characters of bacterial isolates which isolated from seed samples of cucurbits which collected from different countries	31
Table (6b)	Continuous	32
Table (7)	Population of pathogenic bacteria as externally and internally on and/or in seed samples of cucurbits collected from different countries	38
Table (8)	Efficiency of some cucurbit seeds which naturally infectious to borne and/or transmit pathogenic bacteria to their seedlings, using paper roll-towel method and sowing in soil method.	40
	sowing in soil method	40

Table (9)	Efficiency of some cucurbit seeds which artificially inoculated to borne and/or transmit <i>Pseudomonas syringae</i> pv. <i>lachrymans</i> to their seedlings, using paper roll-towel method and sowing method	42
Table (10)	Effect of chemical compounds on percentage of seedlings death and symptomatic seedlings of cucumber obtained from different locations, at different doses, using paper roll-towel method, under laboratory conditions.	47
Table (11)	Effect of some chemical compounds on the percentage of seedlings death and the percentage of symptomatic seedlings of cucumber which obtained from different locations, at different doses, using sowing in soil method under greenhouse conditions	50
Table (12)	Effect of some volatile compounds on the percentage of seedlings death and the percentage of symptomatic seedlings of cucumber which obtained from different locations, at different doses, using paper roll-towel method under laboratory conditions	53
Table (13)	Effect of some volatile compounds on the percentage of seedlings death and the percentage of symptomatic seedlings of cucumber which obtained from different locations, at different doses, using sowing in soil method under greenhouse conditions	56
Table (14)	Effect of some chemical compounds on the percentage of seedlings death and the percentage of symptomatic seedlings of cucumber which artificially inoculated, at different doses, using paper roll-towel and sowing in soil methods	59

Table (15)	Effect of some volatile compounds on the percentage of seedlings death and the percentage of symptomatic seedlings of cucumber which artificially inoculated, at different doses, using paper roll-towel and sowing in soil methods	61
Table (16)	Effect of some chemical compounds on seeds germination and seedlings growth of cucumber, at different doses, under laboratory conditions (paper roll-towel method) and greenhouse conditions (sowing in soil method)	63
Table (17)	Effect of some volatile compounds on seeds germination and seedlings growth of cucumber, at different doses, under laboratory conditions (paper roll-towel method) and greenhouse conditions (sowing in soil method)	66
Table (18)	Effect of plasmacluster ions on the population of <i>Pseudomonas syringae</i> pv. <i>lachrymans</i> and <i>Xanthomonas campestris</i> bacteria under laboratory conditions	71

LIST OF FIGURS

Fig. (1)	Percentage of infested seed samples of different hosts of cucurbits during 2005, 2006 and 2007 seasons	27
Fig. (2)	Percentage of infested samples of cucurbits seeds collected from different countries during 2005, 2006 and 2007 seasons	28
Fig. (3)	Externally and internally population of pathogenic bacteria on and/or in cucurbits seed samples which collected from different countries	39
Fig. (4)	Ability of some cucurbit seeds which naturally infectious to borne and/or transmit pathogenic bacteria to their seedlings, using paper roll-towel method and sowing in soil method	41
Fig. (5)	Ability of some cucurbit seeds which artificially inoculated to borne and/or transmit Pseudomonas syringae pv. lachrymans to their seedlings, using paper roll-towel method and sowing method	43
Fig. (6)	Efficiency of some chemical compounds on percentage of seedlings death of cucumber obtained from different locations, at different doses, using paper roll-towel method, under laboratory conditions	48
Fig. (7)	Efficiency of some chemical compounds on percentage of symptomatic seedlings of cucumber obtained from different locations, at different doses, using paper roll-towel method, under laboratory conditions	49
Fig. (8)	Efficiency of some chemical compounds on percentage of seedlings death of cucumber obtained from different locations, at different doses, using sowing in soil method, under greenhouse conditions	51

Fig. (9)	Efficiency of some chemical compounds on percentage of symptomatic seedlings of cucumber obtained from different locations, at different doses, using sowing in soil method, under greenhouse conditions	52
Fig. (10)	Efficiency of some volatile compounds on percentage of seedlings death of cucumber obtained from different locations, at different doses, using paper roll-towel method, under laboratory conditions	54
Fig. (11)	Efficiency of some volatile compounds on symptomatic seedlings of cucumber obtained from different locations, at different doses, using paper roll-towel method, under laboratory conditions	55
Fig. (12)	Efficiency of some volatile compounds on seedlings death of cucumber obtained from different locations, at different doses, using sowing in soil method, under greenhouse conditions	57
Fig. (13)	Efficiency of some volatile compounds on symptomatic seedlings of cucumber obtained from different locations, at different doses, using sowing in soil method, under greenhouse conditions	58
Fig. (14)	Efficiency of some chemical compounds on percentage of cucumber seedlings death and symptomatic seedling, at different doses, using paper roll-towel and sowing in soil methods	60
Fig. (15)	Efficiency of some volatile compounds on percentage of cucumber seedlings death and symptomatic seedling, at different doses, using paper roll-towel and sowing in soil methods	62
Fig. (16)	Efficiency of some chemical compounds on cucumber seeds germination, at different doses, under laboratory conditions (paper roll-towel method) and greenhouse conditions (sowing in soil method)	64

Fig. (17)	Efficiency of some chemical compounds on cucumber seedlings growth, at different doses, under laboratory conditions (paper roll-towel method) and greenhouse conditions (sowing in soil method)	65
Fig. (18)	Efficiency of some volatile compounds on cucumber seeds germination, at different doses, under laboratory conditions (paper roll-towel method) and greenhouse conditions (sowing in soil method)	67
Fig. (19)	Efficiency of some volatile compounds on cucumber seedlings growth, at different doses, under laboratory conditions (paper roll-towel method) and greenhouse conditions (sowing in soil method)	68
Fig. (20)	Effect of plasmacluster ions on the population of <i>Pseudomonas syringa</i> e pv. lachrymans and Xanthomonas campestris bacteria under laboratory condition.	70
Fig. (21)	Effect of plasmacluster ions on the population of <i>Pseudomonas syringae</i> pv. <i>lachrymans</i> and <i>Xanthomonas campestris</i> bacteria under laboratory condition.	72