

Myasthenic Crisis: An Intensive Care Emergency

Essay

Submitted for Partial Fulfillment of the Master's Degree in Intensive Care

By

Haitham Yahia Abu-elmaaty Yahia

M.B.B.Ch, Faculty of Medicine, Al-Azhar University

Supervised by

Prof. Dr. Hala Amin Hassan

Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Prof. Dr. Waleed Abdelmegeed Mohammed Eltaher

Professor of Anesthesiology, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Dr. Raham Hasan Mostafa

Lecturer in Anesthesiology, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2016

سورة البقرة الآية: ٣٢

Acknowledgement

First and foremost thanks to **Allah**, the Most Beneficent and Merciful.

I wish to express my deep appreciation and sincere gratitude to **Professor Doctor/ Hala Amin Hassan,** Professor of Anesthesiology, Intensive Care and Pain Management, Ain Shams University, who suggested this subject for reviewing and for her supervision, continuous help and patience. It was a great honor for me to work under her supervision.

I wish to express my sincere thanks and deepest gratitude to **Professor Doctor/ Waleed Abdelmegeed Mohammed Eltaher,** Professor of Anesthesiology, Intensive Care and Pain Management, Ain Shams University for his eminent guidance, encouragement and revision throughout the work.

Special appreciation to **Doctor/ Raham Hasan Mostafa,** Lecturer in Anesthesiology, Intensive Care and Pain Management, Ain Shams University, for her kind advice, valuable instructions and continuous support which was the corner stone in the completion of this work.

Last but not least, I would like to present a lot of thanks to my family, friends, and to my colleagues, whom without their help and support, this work could not come to birth.

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	v
List of Figures	vii
Introduction	1
A Review on Myasthenia Gravis	3
Diagnosis of Myasthenic Crisis	63
Management of Myasthenic Crisis in Intensive	
Summary	120
References	126
Arabic Summary	

List of Abbreviations

Abbre.	Full term
Ab	Antibody
ABG	Arterial blood gases
ACBT	Active cycle of breathing technique
ACh	Acetylcholine
AChE	Acetylcholinesterase
AChEIs	Acetylcholinesterase inhibitors
AChR	Acetylcholine receptors
ACTs	Airway clearance techniques
\mathbf{AD}	Autogenic drainage
ASV	Adaptive support ventilation
AZA	Azathioprime
β2	Beta 2
bid	'bid in die' twice a day
BiPAP	Bilevel positive airway pressure
BMI	Body mass index
BUN	Blood urea nitrogen
CBC	Complete blood count
CD20	Cluster of differentiation 20
cm	Centimeter
CMAP	Compound muscle action potential
cmH ₂ O	Centimeter water
COPD	Chronic obstructive pulmonary disease
CP	Cyclophosphamide
CPAP	Continuous positive airway pressure
Cr	Creatinine
CSs	Corticosteroids
\mathbf{CT}	Computerized tomography
CyA	Cyclosporine A
DFPP	Double-filtration plasmapheresis
DNA	Deoxyribonucleic acid
DVT	Deep venous thrombosis
ED	Emergency department

List of Abbreviations (Cont.)

Abbre.	Full term
EDC	Extensor digiti communis
Edi	Electrical activity of the diaphragm
FiO_2	Fraction of inspired oxygen
$\overline{\mathbf{EMG}}$	Electromyography
EPSPs	Excitatory postsynaptic potentials
ERV	Expiratory reserve volume
FDA	Food and drug administration
FK506	Tacrolimus
FRC	Functional residual capacity
FVC	Forced vital capacity
GI	Gastrointestinal
$\mathbf{g}\mathbf{M}\mathbf{G}$	Generalized myasthenia gravis
HFCWO	High frequency chest wall oscillation
HLA	Human leukocyte antigen
H_2O	Water
IA	Immunoadsorption
ICU	Intensive care unit
IgA	Immunoglobulin A
IgG	Immunoglobulin G
\mathbf{IL}	Interleukin
\mathbf{IPV}	Intrapulmonary percussion ventilation
IRV	Inspiratory reserve volume
ITU	Intensive therapy unit
IV	Intravenous
IVIg	Intravenous immunoglobulin
kg	Kilogram
\mathbf{L}	Liter
L/min	Liter per minute
LEMS	Lambert-Eaton myasthenic syndrome
LRP4	Low density lipoprotein receptor-related
	protein 4
MASC	Myotube-associated specificity component

List of Abbreviations (Cont.)

Abbre.	Full term	
MC	Myasthenic crisis	
MEP	Maximal expiratory pressure	
MFVL	Maximum flow-volume loop	
mg	Milligram	
\mathbf{MG}	Myasthenia gravis	
MGFA	Myasthenia Gravis Foundation of America	
min	Minute	
MIP	Maximal inspiratory pressure	
ml	Milliliter	
ml/kg	Milliliter per kilogram	
mmHg	Millimeter of mercury	
mmol/L	Millimol per liter	
MTX	Methotrexate	
MuSK	Muscle-specific receptor tyrosine kinase	
MyM	Mycophenolate mofetil	
NAVA	Neutrally-adjusted ventilatory assist	
NIF	Negative inspiratory force	
NIV	Non-invasive ventilation	
NMJ	Neuromuscular junction	
NPPV	Noninvasive positive pressure ventilation	
\mathbf{oMG}	Ocular myasthenia gravis	
PaCO ₂	Partial pressure of arterial carbon dioxide	
PaO_2	Partial pressure of arterial oxygen	
PAV	Proportional assist ventilation	
PCV	Pressure control ventilation	
PE	Plasma exchange	
PEEP	Positive end-expiratory pressure	
PEF	Positive expiratory force	
PEmax	Maximal expiratory pressure	
PEP	Positive expiratory pressure	
PFTs	Pulmonary function tests	
PImax	Maximal inspiratory pressure	

List of Abbreviations (Cont.)

Abbre.	Full term
PSV	Pressure support ventilation
qd	'quaque die' one a day
QMG	quantitative myasthenia gravis (score)
qod	'quaque altere die' every other day
RATL	Rapsyn-associated transmembrane linker
RNA	Ribonucleic acid
RNS	Repetitive nerve stimulation
RTM	Rituximab
\mathbf{RV}	Residual volume
SaO_2	Arterial blood hemoglobin oxygen saturation
SFEMG	Single-fibre electromyography
SIMV	Synchronized intermittent mandatory
	ventilation
SNIP	Sniff nasal inspiratory pressure
TE	Thymectomy
TNF	Tumour necrosis factor
TPE	Therapeutic plasma exchange
VAP	Ventilator-associated pneumonia
VATS	Video-assisted thoracoscopic surgery
VC	Vital capacity
VGCC	Voltage-gated calcium channels
V/Q	Ventilation/perfusion

List of Tables

Cable No.	Citle	Page No.
Table (1):	Modified Osserman Classificati myasthenia gravis	
Table (2):	Myasthenia Gravis Foundation of a clinical classification of the seven myasthenia gravis.	erity of
Table (3):	Quantitative myasthenia gravis score.	
Table (4):	Criteria for diagnosing ocular myagravis.	
Table (5):	Examinations of the extra musculature in myasthenia gravis	
Table (6):	Drugs that may induce or exasymptoms of MG.	
Table (7):	Diagnostic tests for myasthenia gra	vis 25
Table (8):	Differential diagnosis of myagravis.	
Table (9):	Characteristics of myasthenia gra Lambert-Eaton syndrome	
Table (10):	Treatment options and recommer in myasthenia gravis.	
Table (11):	Respiratory dysfunction associated decreasing forced vital capacimyasthenic crisis	city in
Table (12):	Medications and drugs that may p myasthenic crisis	•

List of Tables (Cont.)

Eable No.	Citle	Page No.
Table (13):	Differential diagnosis of crisis.	•
Table (14):	Comparison between cholin and myasthenic crisis	C
Table (15):	Principles of management of crisis.	•
Table (16):	Management of myasthenia gr	avis crisis 82
Table (17):	Ventilatory tests in pat myasthenic crisis	
Table (18):	Short- and long-term the myasthenia gravis crisis	1

List of Figures

Figure No.	Citle	Page No.
Figure (1):	Structure of the neur	
Figure (2):	Normal (left) and decrement response to repetitive stimular	` U /
Figure (3):	Circuit diagram for plasma e	xchange 38
Figure (4):	Double-filtration plasma circuit	•
Figure (5):	Circuit diagram for immunoac	lsorption 40
Figure (6):	Pathophysiology of myasthe	nic crisis 66
Figure (7):	Algorithm for myasthen management	
Figure (8):	Cuirass ventilation	105

Introduction

yasthenia Gravis (MG) is an autoimmune disease caused by auto-antibodies that block the function of postsynaptic acetylcholine receptors at motor end plates, which result in degradation and depletion of the receptors. Myasthenia Gravis has an incidence of roughly 3 in every 100,000 people. It can manifest at any age and; like many autoimmune disorders, is more common in females (*Kumar et al.*, 2013).

MG usually presents with one of three different forms: ocular, bulbar, or generalized. The hallmark presenting characteristics are weakness and muscle fatigability. Depending on the predominant initial form, patients with MG can complain of a plethora of symptoms including diplopia, eyelid ptosis, difficulty chewing and swallowing, dysarthria, proximal limb weakness, generalized fatigue, and shortness of breath (*Bershad et al.*, 2008).

Overall, 15 to 20% of patients with MG will experience a myasthenic crisis (MC), and it usually occurs within the first 2 years after diagnosis of MG in most patients (74%). Patients who develop MC in their great majority have a precipitating factor, although; in 30 – 40% of cases, none is found (**Lacomis**, **2005**). Respiratory infection (40%), emotional stresses, microaspirations (10%), changes in medication regimen (8%), surgery, or trauma are among the most common predisposing factors (*Wendell and Levine*, *2011*).

MC is a neurologic emergency that requires prompt recognition and treatment. A straight-forward bedside clinical history and examination using pulmonary function tests can help with the diagnosis. Effective management with supportive therapy in the intensive care unit (ICU) setting can help minimize morbidity and mortality. Triggering factors should be identified and treated. An active role toward extubating the patient can reduce ICU complications.

Short-term treatment with plasma exchange or intravenous immunoglobulins may expedite recovery. Long-term treatment with acetylcholinesterase inhibitors, corticosteroids or immunemodulating agents to prevent future recurrence should be initiated as soon as possible (*Bershad et al.*, 2008).

Respiratory Care of these patients presents a challenge for the critical care practioners. Although no single factor determines the need for respiratory support, all patients with questionable respiratory status should be admitted to the ICU. Certain tests of respiratory muscle strength may help to identify impending respiratory failure and allow elective rather than emergent intubation. When treated aggressively adequately, patients generally have good outcomes in current practice (*Ping-Hung and Pi-Chuan*, 2012).

A Review on Myasthenia Gravis

Myasthenia Gravis (MG) (Synonym: Goldflam disease) is an autoimmune disorder affecting neuro-muscular transmission leading to generalized or localized muscle weakness due most frequently to the presence of auto-antibodies against acetylcholine receptors (AChR) in the postsynaptic motor end-plate (Godoy et al., 2013).

Epidemiology

Age-related demographics

MG can occur at any age. Female incidence peaks in the third decade of life, whereas male incidence peaks in the sixth or seventh decade. The mean age of onset is 28 years in females and 42 years in males.

Transient neonatal MG occurs in infants of myasthenic mothers who acquire anti-AChR antibodies via placental transfer of immunoglobulin G (IgG) and is self-limiting. There is poor crying and suckling and the infant is floppy. The weakness may persist till the end of the 3rd month. Treatment with anticholinesterases is required. Most infants born to myasthenic mothers possess anti-AChR antibodies at birth, yet only 10-20% develop neonatal MG. This may be due to the protective effects of alpha-fetoprotein, which inhibits binding of anti-AChR antibody to AChR. High

maternal serum levels of AChR antibody may increase the chance of neonatal MG; thus, lowering the maternal serum titer during the antenatal period by means of plasmapheresis may be useful (*Keesey*, 2004)

Sex-related demographics

Classically, the overall female-to-male ratio has been considered to be 3:2, with a female predominance in younger adults (i.e., patients aged 20-30 years) and a slight male predominance in older adults (i.e., patients older than 50 years).—Studies show; however, that with increased life expectancy, males are coming to be affected at the same rate as females. Ocular MG shows a male preponderance. The male-to-female ratio in children with MG and another autoimmune condition is 1:5 (*Grob et al.*, 2008).

Pathogenesis

Neuromuscular transmition

In a normal individual, an action potential travels down a motor nerve axon to the axon terminals and stimulates the release of vesicles containing acetylcholine. The acetylcholine diffuses across the synapse at the neuromuscular junction and postsynaptic stimulates the membrane by binding The of acetylcholine receptors. stimulation acetylcholine receptors results in the production of excitatory postsynaptic potentials which trigger muscle fiber action