

A PROPOSED BUSBAR PROTECTION SCHEME IMMUNE TO THE IMPACT OF OUTFLOW CURRENT DURING INTERNAL FAULTS

By

Ibrahim Mahmoud Ibrahim Mohamed

A thesis submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

A PROPOSED BUSBAR PROTECTION SCHEME IMMUNE TO THE IMPACT OF OUTFLOW CURRENT DURING INTERNAL FAULTS

By

Ibrahim Mahmoud Ibrahim Mohamed

A thesis submitted to the

Faculty of Engineering at Cairo University

In Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

A PROPOSED BUSBAR PROTECTION SCHEME IMMUNE TO THE IMPACT OF OUTFLOW **CURRENT DURING INTERNAL FAULTS**

By

Ibrahim Mahmoud Ibrahim Mohamed

A thesis submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Under supervision of

Prof. Dr. Essam El-Din Abou El-

Associate Prof. Dr. Doaa Khalil

Zahab

Ibrahim

Faculty of Engineering,

Cairo University

Faculty of Engineering,

Cairo University

A PROPOSED BUSBAR PROTECTION SCHEME IMMUNE TO THE IMPACT OF OUTFLOW CURRENT DURING INTERNAL FAULTS

By

Ibrahim Mahmoud Ibrahim Mohamed

A thesis submitted to the

Faculty of Engineering at Cairo University

In Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

In

Electrical Power and Machines Engineering

Approved by the	
Examining Committee:	
Prof. Dr. Essam El-Din Abou El-Zahab	Thesis main advisor
Associate Prof. Dr. Doaa Khalil Ibrahim	Member
Prof. Dr. Mohamed Ibrahim Gilany	Internal Examiner
Prof. Dr. Almoataz Youssef Abdelaziz Faculty of Engineering, Ain Shams University	External Examiner

Engineer: Ibrahim Mahmoud Ibrahim Mohamed

Date of Birth: 11 / 12 / 1987 Nationality: Egyptian

E-mail: Ibrahim_has1987@yahoo.com

Phone: +201066560689

Address: 13 Gamal Abdel Nasser st.

El Sharabiaa – Cairo -Egypt

Registration Date: 01 / 10 / 2011
Awarding Date: / / 2017
Degree: Master of Science

Department: Electrical Power and Machines Engineering

Supervisors: Prof. Dr. Essam El-Din Abo El-Zahab

Associate Prof. Dr. Doaa Khalil Ibrahim

Examiners: Prof. Dr. Essam El-Din Abo El-Zahab

Associate Prof. Dr. Doaa Khalil Ibrahim Prof. Dr. Mohamed Ibrahim Gilany Prof. Dr. Almoataz Youssef Abdelaziz

Title of Thesis: A Proposed Busbar Protection Scheme Immune to the Impact of Outflow Current during Internal Faults

Key Words: Busbar Protection; Mimic Filter; One and a Half Breaker Busbar; Outflow Current; Phaselet

Summary:

This thesis describes a proposed busbar protection scheme immune to the impact of the outflow current during internal faults based on the combination of magnitude and phase angle comparisons into a single characteristic with setting adjustment according to the requirements of the busbar protection. The effective relay performance is achieved by implementing the phaselet approach and the adaptive digital mimic filter to facility estimating the current phasor rapidly that causes the proposed relay to operate faster.

The performance of the proposed scheme is extensively analyzed for different fault conditions on a breaker and a half bus substation to ensure its proper response during internal, external and evolving faults. Tests are carried out to investigate the impact of the circulating current, CT saturation, fault inception angle, fault type, fault location and high fault resistance. ATP simulations ensure that the proposed scheme can fulfill all busbar protection requirements within quarter cycle operation time and is not affected by the outflow current during internal faults.

ACKNOWLEDGMENTS

First of all, many thanks to Allah who helped and guided me in preparing this thesis.

I wish to express my deep gratitude to my supervisors; Prof. Dr. Essam El Din Abo El Zahab and Associate Prof. Dr. Doaa Khalil Ibrahim, Electrical Power and Machines Department, Faculty of Engineering, Cairo University for their endless support, insightful comments and excellent suggestions.

Also, I would like to thank my colleagues and managers for their support and advice.

Finally, I can never thank my family enough for their consistent sacrifice, great support and continuous encouragement during my study.

TABLE OF CONTENTS

ACKN	NOWLEDGMENTS	ii
TABL	LE OF CONTENTS	iii
LIST	OF TABLES	vi
LIST	OF FIGURES	vii
LIST	OF SYMBOLS AND ABBREVIATIONS	X
	RACT	
СНАР	PTER (1): INTRODUCTION	1
1.1.	Background	1
1.2.	Problem Statement	3
1.3.	Thesis Objectives	3
1.4.	Thesis Organization	4
СНАБ	PTER (2): LITERATURE SURVEY FOR DIFFERENTIAL A	ND
	CTIONAL BUSBAR PROTECTION	
2.1.	Conventional Differential Protection	6
2.2.	Conventional Directional Protection	7
2.3.	Recent Algorithms Based on Differential and Directional Protection	8
2.3	3.1. Directional Protection Based on Sequence Impedance	8
2.3	3.2. Directional Protection Considering Pre-fault Voltage	9
2.3	3.3. Differential Protection with CT Saturation Detection Algorithm	10
2.3	3.4. Differential Protection with CT Saturation Compensating Algorithm	12
2.3	3.5. Combination of Differential and Directional Protection	13
СНАР	PTER (3): OUTFLOW CURRENT DURING INTERNAL FA	ULTS
	••••••	15
3.1.	Circulating Current in Busbar Arrangements	15
3.2.	Circulating Current in Transmission Line Arrangements	17
3.3.	The Impact of Outflow Current during Bus Faults on the Conventional Busba Protection	
3.3	3.1. Conventional Differential Protection	18
3.3	3.2. Conventional Directional Protection	18
3.4.	A Published Busbar Protection Technique Immune to the Effect of Outflow Cduring Bus Faults	
3.4	4.1. Performance Analysis during Internal Faults	19
3.4	1.2. Performance Analysis during External Faults	20

3.4.3.	The Effect of CT Saturation	21
3.4.4.	General Performance Evaluation of the Integrated Impedance Technique	22
CHAPTEI	R (4): PROPOSED BUSBAR PROTECTION SCHEME	23
	rent Ratio Plane	
4.1.1.	Setting Adjustment for Busbar Protection	24
4.1.1.	Internal Fault without Outflow Current	24
4.1.1.	Internal Fault with Circulating Current	25
4.1.1.	3. Internal Fault with Circulating Current and High Fault Resistance	27
4.2. Pha	sor Estimation	30
4.2.1.	Discrete Fourier Transform	30
4.2.2.	Phaselet Approach	31
4.3. Dig	rital Mimic Filter	33
4.3.1.	Principle of Operation	33
4.3.2.	Digital Mimic Filter Characteristics	33
4.3.3.	Time Constant Estimation	34
4.4. Dis	turbance Detector	36
4.5. Dig	rital Low-Pass Filter	37
4.6. Pro	posed Scheme Procedures	38
CHAPTEI	R (5): POWER SYSTEM SIMULATION	41
	tem under Study	
5.1.1.	·	
5.1.2.	-	
5.1.2.	<u> </u>	
5.1.2.	-	
5.1.2.	3. CT Model in ATP	45
5.1.3.	Power Sources and Loads Modeling	47
5.1.4.	Transmission Line Modeling	48
5.1.5.	Fault Modeling	48
5.2. Set	ting Adjustment of the Proposed Scheme	48
CHA DTEI	D (C). CIMILI ATION CACEC AND DEDECORMANCE	
ANALYSI	R (6): SIMULATION CASES AND PERFORMANCE S	50
	ting the Performance during Internal Faults	
6.1.1.	Internal Fault with Circulating Current	
6.1.1.		
6.1.1.		

6.1.2	. Internal Fault without Circulating Current	56
6.1.3	. Internal Fault with High Fault Resistance	60
6.2.	Testing the Performance during External Faults	62
6.2.1	. External fault with Severe CT saturation	64
6.2.2	. External fault of Different Fault Types and Locations	67
6.2	2.2.1. Double Phase External Fault	67
6.2	2.2.2. External Fault Far away from the Busbar	70
6.3.	Testing the Performance during Evolving Faults	72
СНАРТ	TER (7): CONCLUSIONS AND FUTURE WORK	75
7.1.	Conclusions	75
7.2.	Future Work	76
REFER	ENCES	77
PUBLIS	SHED WORK	81

LIST OF TABLES

Table 5.1: The system parameters	42
Table 5.2: Input and output data of SATURA routine	47
Table 5.3: Parameter values for the four loads	48
Table 6.1: Simulation results analysis for internal fault with circulating curren	ıt
(Case 1: one source is connected)	51
Table 6.2: Simulation results analysis for internal fault with circulating curren	ıt
(Case 2: two sources are connected)	54
Table 6.3: Simulation results analysis for internal fault without circulating	
current	56
Table 6.4: Simulation results analysis for internal fault with high fault	
resistance	50
Table 6.5: Simulation results analysis for external fault	52
Table 6.6: Simulation results analysis for external fault with severe CT	
saturation	55
Table 6.7: Simulation results analysis for double phase external fault	57
Table 6.8: Simulation results analysis for external fault far away from the	
busbar	70
Table 6.9: Simulation results analysis for evolving fault	72

LIST OF FIGURES

Figure 1.1: Connection of differential busbar protection technique
Figure 1.2: Frame leakage busbar protection
Figure 2.1: Operation characteristics of differential protection technique 7
Figure 2.2: Operation characteristics of phase angle comparison technique 8
Figure 2.3: Characteristics of fault discrimination
Figure 2.4: Waveform of the difference functions during CT saturation 11
Figure 2.5: Differential protection performance during internal and external
faults
Figure 2.6: Operating regions of differential protection
Figure 2.7: Operating modes of the combined technique
Figure 3.1: Single breaker-single bus scheme during (a) internal fault F1 and
(b) external fault F2
Figure 3.2: Internal fault on breaker and half busbar with circulating current. 16
Figure 3.3: The effect of connecting the power source Gen 2 during internal
fault with circulating current
Figure 3.4: Internal fault on multi-terminal line with circulating current 18
Figure 3.5: Single busbar considered for performance analysis
Figure 3.6: Performance analysis of the integrated impedance technique during
internal faults
internal faults

Figure 4.7: The current ratio versus the fault resistance for different values of
the sharing percentage and outfeed percentage
Figure 4.8: Current ratio plane with the effect of the circulating current and
fault resistance
Figure 4.9: Traditional full cycle Fourier approach
Figure 4.10: Phaselet approach
Figure 4.11: Digital 3 rd order low-pass filter characteristics
Figure 4.12: Flowchart of the proposed scheme
Figure 5.1: The system under study
Figure 5.2: Simplified equivalent circuit of the current transformer
Figure 5.3: Typical excitation curves for multi-ratio current transformers 44
Figure 6.1: Simulation of an internal fault with circulating current
Figure 6.2: Simulation results for an internal fault with circulating current 52
Figure 6.3: Simulation of an internal fault with circulating current
Figure 6.4: Simulation results for an internal fault with circulating current 55
Figure 6.5: Simulation of an internal fault without circulating current 56
Figure 6.6: Simulation results of Phase A for single phase to ground (AG)
internal fault without circulating current57
Figure 6.7: Simulation results of Phase B for single phase to ground (AG)
internal fault without circulating current
Figure 6.8: Simulation results of Phase C for single phase to ground (AG)
internal fault without circulating current
Figure 6.9: Simulation of an internal fault with high fault resistance 60
Figure 6.10: Simulation results for an internal fault with high fault resistance 61
Figure 6.11: Simulation results for an external fault
Figure 6.12: Simulation of an external fault with severe CT saturation 64
Figure 6.13: Simulation results for an external fault with severe CT saturation
66
Figure 6.14: Simulation of a double phase external fault
Figure 6.15: Simulation results of Phase B for double phase (BC) external fault
60

Figure 6.16: Simulation results of Phase C for double phase (BC) extern		al fault	
		69	
Figure 6.17:	Simulation of an external fault far away from the busbar	70	
Figure 6.18:	Simulation results for an external fault far away from the busbar	71	
Figure 6.19	Simulation of an evolving fault	72	
Figure 6.20:	Simulation results for an evolving fault	73	

LIST OF SYMBOLS AND ABBREVIATIONS

• Symbols

a : The real part of the vector current ratio.

 A_0 : The amplitude of the dc component of the fault current.

 A_h : The amplitude of the hth harmonic component

b : The imaginary part of the vector current ratio

c : The percentage of outflow current caused by circulating path

del1(k) : The first difference current

del2(k) : The second difference current

del3(k) : The third difference current

The percentage of outflow load current caused by high

resistance bus fault

h: The harmonic index

 I_{base} : The base current in A

 I_{C1} , I_{C2} : The circulating path feeder currents

 I_{CS} : The compensated secondary current of CT

 I_{DIF} : The differential current

 I_E : The excitation current of CT

 I_F : The fault current

 $I_{F max}$: The r.m.s value of the largest fault current

 I_i : The current passed through the incoming feeder with index i

 I_{imag} : The imaginary part of the current phasor

 I_L : CT load current

 I_{load} : The load current

 Im_{ip} : The imaginary part of the pth phaselet for current signal

 I_{mag} : The amplitude of the current phasor

 I_P : The primary current of CT

 I_{Pkp} : The pickup threshold current

 $I_{p \, rating}$: The primary current rating

 I_r : The vector current ratio

 I_{real} : The real part of the current phasor

 I_{Ref} : The reference feeder current

 I_{RES} : The restraining current

 I_S : The secondary current of CT

 I_{SC} : The stray capacitance current

 I_{SR} : The summation of the feeder currents except the reference

· one

k : Sample index

K: The gain factor of the digital mimic filter

 k_f : The most recent sample after fault occurrence

n: The number of feeders connected to the protected bus

N : Total number of samples per power frequency cycle

ni : The total number of the incoming feeders

 N_T : Number of turns of the CT secondary winding

p : The phaselet index

q : The number of samples per phaselet

r : The amplitude of the vector current ratio

R₁ : The radius of the small arc in the current ratio plane

R₂ : The radius of the large arc in the current ratio plane