

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار عن الغبار عن الغبار عن 20-40% عن 25-25 مئوية ورطوبة نسبية من 20-40% عن درجة حرارة من 25-25 مئوية ورطوبة نسبية من 25-25 To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

A STUDY ON MACHINERY USED IN FORMING OF GRAIN CHAFF BY PRESSING AND BONDING

BY

YOUSEF AHMAD WATFA

B.Sc.Power Dept., Fac.of Mech.Eng. Univ.of Aleppo, Syria,1988.

Thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
In
AGRICULTURE
(AGRICULTURAL MECHANIZATION)

Mechanization Department Faculty of Agriculture Ain Shams University Cairo-Egypt

APPROVAL SHEET

A STUDY ON MACHINERY USED IN FORMING OF GRAIN CHAFF BY PRESSING AND BONDING

BY

YOUSEF AHMAD WATFA

B.Sc.Power Dept., Fac.of Mech.Eng., Univ.of Aleppo, Syria,1988.

This thesis for M.Sc. degree has been approved by:

Associate Prof. of Food Sci. & Tech., Fac. of Agric., Ain Shams Univ.

Prof. of Agric. Eng., Fac. of Agric., Ain Shams Univ., (supervisor).

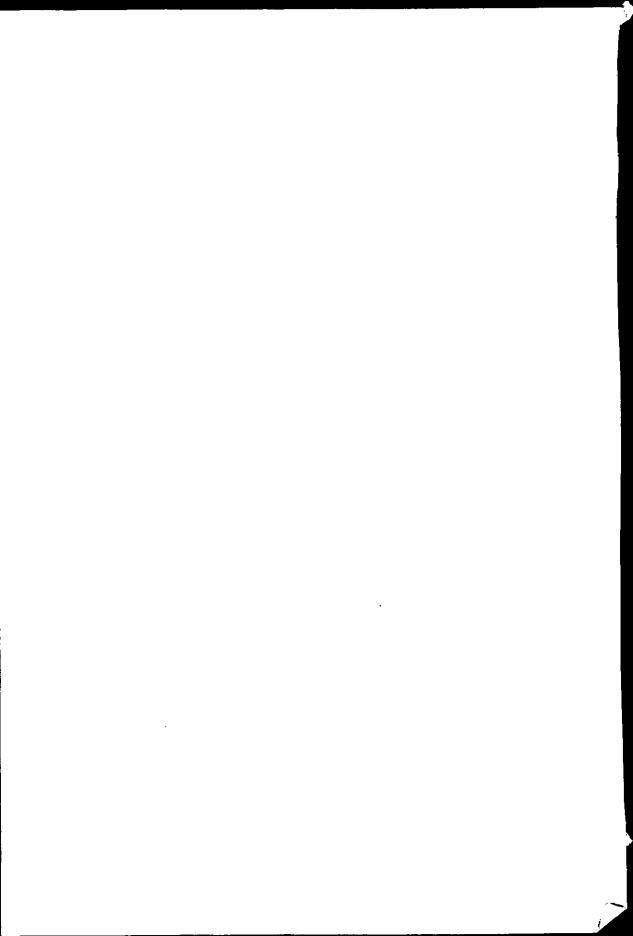
Date of examination: 14/2/1999.

*

A STUDY ON MACHINERY USED IN FORMING OF GRAIN CHAFF BY PRESSING AND BONDING

BY

YOUSEF AHMAD WATFA

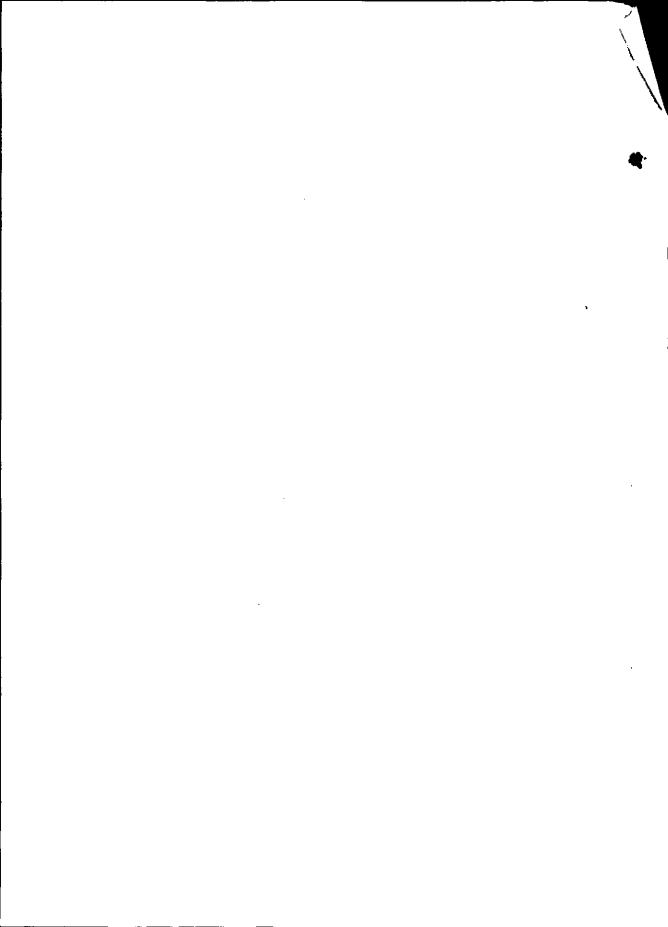

B.Sc. Power Dept., Fac. of Mech. Eng. Univ. of Aleppo, Syria, 1988.

Under Supervision of:

Prof. Dr. M. N. El- Awady
Prof. of Agric. Eng., Fac. of Agric., Ain Shams Univ..

Prof. Dr. A. F. El- Sahrigi Prof. of Food. Eng., Fac.of Agric., Ain Shams Univ..

Dr.M. A. El-Nono Dr. of Agric. Eng. Fac. of Agric., Ain Shams Univ..


Acknowledgement

The author appreciates much the advisors committee for their help in the completion of this research:

Prof.Dr.Mohammed Nabil El.Awady

Prof.Dr.A. F. El-Sahrigi

Dr. Mahmoud Ahmad El-Nono.

ABSTRACT

Yousef Ahmad Watfa . A study on machinery used in forming of grain chaff by pressing and bonding. Unpublished Master of science, University of Ain Shams, Faculty of Agriculture, Department of Agricultural Mechanization, 1999.

This investigation was about mechanism used in forming of grain chaff by pressing and bonding into pellets.

A screw-manual pelletizer was used with wheat dust conditioned with water. Pelleting pressure determining device and four dies were constructed.

Pelleting with no heating made incoherent pellets.

Pellets durability was measured by determining the percent weight of the undamaged pellets after being dropped (10) times of 2m height on a hard surface. Bulk density of the air-dried pellets rated (391-460) kg/m³. Pelleting pressure was limited with maximum of 4.1 bar.

The addition of lignosulfonate, molasses, glue binders into dust-water mixture improved the pellets durability. Pellet lengths were (2-4) cm for fat added mixture, and (5-11) cm for mixtures containing other binding agents.

Increasing pelleting temperature from 65 to 110°C increased the durability index by 11% and decreased the specific energy from 8.08 to 4.44 kW.h/ton.

Increasing die hole from 4 to 8 mm reduced specific energy by 42 %, pelleting pressure by 35% and bulk density by 15%.

Cost analysis of this prototype pelletizer operation showed 0.48 L.E. per kg dust pelleting cost.

Extension of the pelletizer through dimensional analysis showed 2.51% L.E. per kg dust pelletization cost by using 0.5 ton/h capacity pelletizer driven by 13 kW engine with steamed dust mixed with 5% vinas from "Sugar Cane Co.".

Key words

Wheat dust, binders, pelleting (pellets formation), screw pelletizer. multi-hole protrusion plate, pelleting pressure, dimensional analysis.

CONTENTS

I-INTRODUCTION	1
II-REVIEW OF LITERATURE	3
2-1-Types of compression devices	4
2-2-Factors affecting pelleting technique:	10
2-2-1-Effect of temperature	10
2-2-1-1-Cold pelleting	10
2-2-1-2-Hot pelleting	10
2-2-Specific energy	12
2-2-3-Effect of moisture content	15
2-2-4-Effect of pressure and dwell time	19
2-2-5-Effect of particle size on the product	22
2-2-6-Composition and binding agents	23
III-MATERIALS AND METHODS	25
3-1-Screw-manual pelletizer	25
3-2-Measurement of specific energy	25
3-3- Measurement of pelleting pressure	28
3-4- Determination of bulk density	31
3-5- Determination of dry matter content	31
3-6- Durability test	32
3-7-Preparation of the mixture	32
3-8-Heating the mixture	32
3-9-Heating the tool	33
3-10-Feasibility of pelleting	33
3-11-Pellets drying	33
3-12-Binder materials	34
3-13-Equations used for design of V.belt	
power transmission	35
3-14- Coefficient of economical cost of wheat	
dust pelleting	36
IV-RESULTS AND DISCUSSION	37

4-1-Cold pelleting	37
4-2-Hot pelleting	39
4-3-Control mixture samples	40
4-3-1-Pellet lengths	40
4-3-2-Specific energy	41
4-3-3-Pelleting pressure	43
4-3-4-Bulk density	44
4-3-5-Durability test	45
4-4-Effect of lignosulfonate addition	46
4-5-Glue addition	51
4-6-Addition of poultry by-product(crude protein)	54
4-7-Addition of poultry by-product (fat)	58
4-8-Molasses additions	63
4-9-Rheological comparison of the mixtures	67
4-10-Economical evaluation	68
4-11-Dimensional analysis of the auger-pelletizer	
operation	70
4-12-Design of 0.5 ton/h. capacity pelleting plant	74
4-12-1-Plant power requirement	75
4-12-2-Design of plant power transmission	76
4-12-3-Design of the dust auger conveyor	77
4-13-Cost-analysis of pelleting plant operation	79
V-SUMMARY AND CONCLUSION	81
5-1-RECOMMENDATIONS	83
VI-REFFERENCES	84
VII-APPENDIX	89
7-1-Assisting factors for V.belt power	
transmission design	93
7-2-Determination of dimensionless groups	
involving the auger-pelletizer performance.	94
-ARABIC SUMMARY	