EFFECT OF HEAT TREATMENTS ON TOXIC COMPOUNDS ACCUMULATION IN POTATOES AND SWEET POTATOES

By

MOHSEN FARGHALY AHMED

B.Sc. Agric. Sci. (General Division), Fac. Agric., Menia Univ., 2001 M.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Menia Univ., 2006

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In

Agricultural Sciences (Agricultural Biochemistry)

Department of Agricultural Biochemistry
Faculty of Agriculture
Cairo University
EGYPT

2016

SUPERVISION SHEET

EFFECT OF HEAT TREATMENTS ON TOXIC COMPOUNDS ACCUMULATION IN POTATOES AND SWEET POTATOES

Ph.D. Thesis

In

Agric. Sci. (Agricultural Biochemistry)

 $\mathbf{B}\mathbf{v}$

MOHSEN FARGHALY AHMED

B.Sc. Agric. Sci. (General Division), Fac. Agric., Menia Univ., 2001 M.Sc. Agric. Sci. (Biochemistry), Fac. Agric., Menia Univ., 2006

SUPERVISION COMMITTEE

Dr. MOHAMED MAGDY RASHED
Professor of Biochemistry, Fac. Agric., Cairo University

Dr. ABDEL MONEIM MOHAMED NAGIB Professor of Biochemistry, Fac. Agric., Cairo University

Dr. LOBNA ABD EL-FATTAH HAREEDY
Head of Research of Food Technology, Agricultural Research Center

Name of Candidate: Mohsen Farghaly Ahmed Degree: Ph.D.

Title of Thesis: Effect of Heat Treatments on Toxic Compounds Accumulation

in Potatoes and Sweet Potatoes.

Supervisors: Dr. Magdy Rashed

Dr. Abdel Moneim Mohamed Nagib Dr. Lobna Abd El-Fattah Hareedy

Department: Agricultural Biochemistry **Approval:** 23/3/2016

ABSTRACT

The objective of the present study was undertaken to investigate the effects of pre-frying treatments on acrylamide reduction in potato and sweet potato chips, and to investigate the biological effects of acrylamide.

The chemical composition of potato (*Solanum tuberosum* L.) and sweet potato (*Ipomoea batatas* L. lam) were studied. The proximate analysis was found to be 81.3%, 74.1% and 77.4% moisture; 2.75%, 3.24% and 1.95% crude fiber; 1.6%, 1.73% and 1.83% total lipid; 11.73%, 12.54% and 12.2% crude protein; 81.27%, 78.86% and 79.75% total carbohydrate and 5.13%, 6.58% and 5.83% ash for potato and sweet potato, respectively.

It was found that the highest acrylamide content for local marketing chips was 4549.1 μ g/kg. While, the lowest acrylamide content of potato chips for soaked in NaCl 5% and fried in sunflower containing rosemary 0.5% at 175°C was 121.0 μ g/kg. The highest acrylamide content of white sweet potato chips for blanched at 100°C/25 min and dried at 200°C/30 min was 1769.0 μ g/kg. While, the lowest acrylamide content of white sweet potato chips for soaked in NaCl 5% and fried in sunflower containing rosemary 0.5% at 175°C was 216.5 μ g/kg. Also, the highest acrylamide content of orange sweet potato chips for control was 2256.9 μ g/kg. While, the lowest acrylamide content of orange sweet potato chips for soaked in NaCl 5% and fried in sunflower containing rosemary 0.5% at 175°C was 198.7 μ g/kg.

The HMF concentration of potato chips in all treatments was not detected. The highest HMF concentration of white sweet potato chips for blanched at 90°C/1 min and soaked in 1.0 % citric acid and fried in blend oil at 170°C was 31.5 mg/kg. Also, the highest HMF concentration of orange sweet potato chips for blanched at 90°C/1 min and soaked in 1.0 % citric acid and fried in blend oil at 170°C was 122.9 mg/kg.

The highest 3-chloropropane-1,2-diol (3-MCPD) concentration of frying oil was 1227.0 μ g/kg and potato chips for local marketing was 1814.3 μ g/kg. While, the lowest soaked in NaCl 5% and fried in sunflower containing rosemary 0.5% at 175°C was 671.0 μ g/kg.

The oral administration of acrylamide ($15000~\mu g/kg~b$. wt.) to rats (group 2), potato chips (30% of meal) contained $1696.0~\mu g/kg$ and $121.0~\mu g/kg$ of acrylamide were fed to group 3 and group 4, respectively led to a significant decrease in HDL cholesterol (24~mg/dl) for group 2 compared to negative control (35.71~mg/dl). Also, there was a significant decrease in GSH in liver and lung (27.96~and~25.88~mmol/g wet tissue, respectively) for group 2 compared to negative control (43.13~and~40.27~mmol/g wet tissue, respectively) and SOD in liver and lung (763.94~and~628.96~U/g wet tissue, respectively) for group 2 compared to control (1384.21~and~1130.59~U/g wet tissue, respectively). However the dose of acrylamide in group 2 led to a significant increase in total cholesterol, triglycerides, LDL cholesterol, creatinine, AST and ALT activities (101.62~mg/dl~116.73~mg/dl~42.8~mg/dl~2.84~mg/dl~166.63~U/L~and~64.85~U/L~respectively) Compared to negative control (11.62~mg/dl~116.30~mg/dl~116.

Keywords: Potato, sweet potato, acrylamide, HMF, 3-MCPD, biological evaluation.

DEDICATION

I dedicate this work to my parents and brothers for all the support they lovely offered during my post-graduate studies.

ACKNOWLEDGEMENT

I wish to express my sincere thanks, deepest gratitude and appreciation to Dr. Mohamed Magdy Rashed, Dr. Abdel Moneim Mohamed Nagib and Dr Abdel-Kader Morsy Abdel-Samad, Professor of Biochemistry, Faculty of Agriculture, Cairo University, for suggesting the problems, supervision, continued assistance, and guidance through the course of my study and for their revision of the manuscript of this thesis. Sincere thanks are also due to Dr. Lobna Abd El-Fattah Hareedy, Head of Research of Food Technology, Agricultural Research Center, NRC, Giza, for sharing in supervision.

Thanks due to all the staff members and colleagues in Biochemistry, Fac. Agric., Cairo University and in Horticulture Crops Processing Department, Food Technology Research Institute, Agricultural Research Center for giving all the facilities that made this work possible.

Special deep appreciation is given to my late father, my late mother, my wife, my brothers and sisters. Also I feel deeply grateful to my dear country Egypt.

LIST OF ABBREVIATIONS

NO	Abbreviations	
1	AA	Acrylamide
2	ALT	Alanine transaminase
3	AOB	Antioxidants of bamboo
4	AST	Aspartate transaminase
5	CFAC	Codex Committee on Food Additives and
		Contaminants
6	CIAA	Confederation of the Food and Drink Industries of
		the EU
7	CML	N(6)-(carboxymethyl)lysine
8	DPPH	2, 2-diphenyl-1-picrylhydrazyl
9	DTNB	5.5 dithiobis (2 – nitrobenzoic acid)
10	EFSA	European Food Safety Authority
11	EGT	Extract of green tea
12	FL	N (6) - (fructosyl) lysine
13	GO	Glyoxal
14	GSH	Glutathione reduced
15	HDL	High-density lipoprotein
16	HMF	Hydroxymethylfurfural
17	HVP	Hydrolyzed vegetable protein
18	IARC	International Agency for Research on Cancer
19	MCPD	Monochloropropane-1,2-diol
20	LDL	Low-density lipoprotein
21	MDA	Malondialdehyde
22	MR	Maillard reaction
23	MRP	Maillard reaction products
24	PBS	Phosphate buffered saline
25	PME	Pectin methyl esterase
26	PPM	Polypropylene metalyz
27	SCF	Scientific Committee for Food
28	SNFA	Swedish National Food Administration
29	SOD	Superoxide dismutase
30	SP	Sweet potato
31	TBA	Thiobarbituric acid
32	TDI	Tolerable daily intake
33	VOSO ₄	Vanadyl sulphate
34	VOs	Vegetable oils

CONTENTS

INTRO	DUCTION
REVIE	W OF LITERATURE
1. Effec	et of thermal treatment on food
a. Sor	ne types of thermal treatment
b. Bio	logical and chemical changes in the thermal
trea	tment of food
c. Ma	illard reaction
	ep frying
e. Bak	king
	am Baking
_	teurization and sterilization
	et of thermal treatment on potato and sweet
_	to
•	ing
	nching effect on reducing sugars and asparagine
d. Vac	cuum frying
3. The	beneficial effect of the thermal treatment on the
food	products
a. Ma	illard reaction improving food products properties
(1)	Color
(2)	Flavor and aroma
(3)	Texture
1. The	harmful effect of the thermal treatment on the
food	products
a. Uno	desirable compounds from the Maillard reaction
(1)	Hydroxymethyfurfural
(2)	Furosine
(3)	N(6)-(carboxymethyl)lysine
(4)	
. ,	(a) Levels and Doses
	(b) Children
	(c) Rats and mice
	(d) 3-chloropropane-1,2-diol (3-MCPD)
	(a) a constraint 1,2 dist (a liter b)

CONTENTS (Continued)

5. Re	ducing the harmful effect of the compounds
res	ulting from the thermal treatments
a. R	educing HMF and Acrylamide Levels in Foods
(1) Effect of pH and Moisture on Reducing Acrylamide
	Levels in bakery products
(2	2) Reducing Acrylamide Levels in potato and sweet
	potato
	(a) Effect of blanching on Reducing Acrylamide
	Levels in potato and sweet potato
	(b) Effect of pH and salts on Reducing Acrylamide
	Levels in potato and sweet potato
	(c) Effect of enzyme on Reducing Acrylamide
	Levels in potato and sweet potato
	(d) The effect of different kinds of oils on Reducing
	Acrylamide Levels in potato and sweet potato
	Remove acrylamide after formation
	educing (3-mcpd) Levels in potato and sweet potato
	emical composition of potato and sweet potato
	hemical composition of potato
) Dry matter
	2) Protein and nitrogen compounds
	S) Starch
	Fibre
,	5) Lipid
	5) Ash and elements
	y) Sugars
-	3) Phenolic compounds
	hemical composition of sweet potato
	ysical analysis in potato and sweet potato
	ardness
	olor management
MAT.	ERIALS AND METHODS
. Ma	terial
a. Pl	ant materials
b. C	nemicals