

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار في درجة حرارة من ١٥-٥٠ مئوية ورطوبة نسبية من ٢٠-٠٠% To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

بعض الوثائـــق الإصليــة تالفــة

بالرسالة صفحات لم ترد بالإصل

THE ROLE OF VISUAL EVOKED POTENTIALS IN EARLY DETECTION OF VISUAL PATHWAY INVOLVEMENT IN DIABETIC PATIENTS

4727 OP

Thesis

Submitted to the
Faculty of Medicine
University of Alexandria
in Partial Fulfillment
of the requirements for the Degree of

Master of Physical Medicine

By

Doaa Mohamed Ali Abdalla MBBch. (Alex.)

Faculty of Medicine
University of Alexandria

SUPERVISORS

Prof. Dr. Mona Mokhtar El-Bardawil

Professor of Physical Medicine Faculty of Medicine University of Alexandria

Prof. Dr. Abd El-Moneim Hussein Helal

Professor of Physical Medicine Faculty of Medicine University of Alexandria

Dr. Ibrahim Khalil Ibrahim

Assistant Professor of Physical Medicine Faculty of Medicine University of Alexandria

Co-Worker

Dr. Mowaffak Moustafa Saad

Lecturer of Physical Medicine

Faculty of Medicine

University of Alexandria

Acknowledgment

I would like to express my greatest gratitude and thanks to

Prof. Dr. Mona Mokhtar El-Bardawil, Professor of

Physical Medicine and Rehabilitation, Faculty of Medicine,

Alexandria University for her planning ideas, guidance, sincere supervision, valuable advices and encouragement throughout this work.

I would also like to express my deep thanks to **Prof. Dr. Abd El-Moneim Hussein Helal,** Professor of Physical Medicine and Rehabilitation, Faculty of Medicine, Alexandria University for his precious advices, encouragement and support to complete this work.

I am very grateful to **Dr. Ibrahim Khalil Ibrahim**, Assistant Professor of Physical Medicine and Rehabilitation, Faculty of Medicine, Alexandria University for his continuous guidance, expert advices and sincere help.

I am also very grateful to **Dr. Mowaffak Moustafa Saad**, Lecturer of Physical Medicine and Rehabilitation, Faculty of Medicine, Alexandria University for his valuable remarks, great assistance and support.

Finally, I would like to thank all members of the Ophthalmology Department of, Alexandria University, for their help in ophthalmologic examination of the subjects included in this work.

ABBREVIATIONS

μV Microvolt

AFCL Axillary F central latency

Amp Amplitude

CNS Central nervous system

CSF Cerebrospinal fluid

CMAP Compound muscle action potential

DM Diabetes mellitus

Hz Hertz

IOAD Interocular amplitude difference

IOD Interocular difference

IOLD Interocular latency difference

Lat Latency

mg|dl milligram per decelliter

mm millimeter

ms millisecond

m/s meter per second

mV millivolt

NPDR Non proliferative diabetic retinopathy

PDR Proliferative diabetic retinopathy

PR-VEP Pattern reversal visual evoked potential

SNAP Sensory nerve action potential

VEP Visual evoked potential

CONTENTS

	Page
1. Introduction	1
2. Aim of the work	23
3. Subjects	24
4. Methods	25
5. Results	32
5. Discussion	57
6. English Summary	64
7. Conclusion	66
8. Recommedation	67
9. References	68
Protocol	
Arabic summary	

INTRODUCTION

Diabetes mellitus comprises an etiologically and clinically heterogeneous group of hyperglycemic disorders. The hyperglycemia is the consequence of a relative or absolute deficiency of insulin in the presence of a relative or absolute excess of glucagons.⁽¹⁾

Diabetes is associated with a set of late complications involving the eyes, the kidneys, nerves and blood vessels. ⁽²⁾ In all of these tissues the major cause of tissue damage is a vascular disease affecting both microvasculature and macrovasculature. ⁽³⁾ The most common pathologies of microvessels occur in diabetic retina and kidney. ⁽⁴⁾ Macrovascular diseases occur in large peripheral arteries of the lower limbs, in cerebral vessels and coronary arteries. ^(3,5)

Diabetic neuropathy

There are various forms of diabetic neuropathy that could be recognized: symmetrical sensorimotor polyneuropathy, autonomic neuropathy and focal neuropathies, which include diabetic proximal neuropathy, mononeuropathies of cranial nerve and peripheral nerves, and truncal neuropathies. (6,7)The first two are considered metabolic in etiology, whereas

mononeuropathy is usually attributed to disease of vasa

The cause of diabetic neuropathy

The cause of diabetic neuropathy is unknown. Three hypotheses have received most attention: the vascular hypothesis the axonal hypothesis and the metabolic hypothesis.

Ischemic disease of the arteriole is generally acknowledged as a primary cause of mononeuropathy but microvascular disease is also considered as a primary contributor to other forms of neuropathy. The axonal hypothesis suggests early functional changes, such as slow axonal transport, followed by structural degeneration. (8)

Understanding metabolic abnormalities of diabetic nerve comes from studies in rats. In experimental diabetes the myoinsitol content of nerves and motor conduction velocity decreases in parallel. (7) Persistent hyperglycemia may activate the polyol pathway (aldose reductase) in nerve causing sorbitol accumulation. Sorbitol content of nerves is inversely related to the number of myelinated fibers. (7) The sequence appears to be as follow: hyperglycemia will lead to increased sorbitol and decreased myo-inositol in Schwann cells and axons.

Consequently axolemmal sodium and potassium ions adenosin triphosphatase activity decreases. This will lead to abnormal energy metabolism, nerve dysfunction and structure damage.

CNS involvement in diabetes mellitus has gained much attention in the last few years. Contrary, to some early impressions, the CNS is not spared in diabetes. (9,10) The metabolic dysregulation influences the cerebral blood flow. In diabetic patients alteration in substrate transport and metabolism have been demonstrated at the neurochemichal, electrophysiological and structural levels. (11)

Neuropathological and neuro-imaging studies revealed structural damage in the brain tissue, demyelination, signs of micro and macroangiopathy and cerebral atrophy. The postulated pathogenic mechanisms are glucose related, including abnormalities in polyol metabolism, glycation and vascular changes. (12)

Diabetic ocular lesions

The main ophthalmologic diabetic complications are oculomotor disturbance, optic neuropathy, rubeosis iridis leading to neovascular glaucoma, cataract and diabetic retinopathy, which is particularly frequent. (13)

Diabetic retinopathy

Retinopathy is a common complication of diabetes and is the principale cause of blindness in adult population. Studies have suggested that eventually up to 75% of all diabetic patients will develop retinopathy. The incidence of diabetic retinopathy increases with the duration of diabetes. Other factors which affect the progression of diabetic retinopathy are the age of onset of diabetes, the level of glycemic control and blood pressure. (14)

General architecture of the retina

The retina is the inner most layer of the eye. It consists of the outer pigmented retina which is formed of the pigmented simple cuboidal epithelium and inner sensory retina which responds to light. The sensory retina contains 120 million photo receptor cells called rods and another 6 or 7 million cones, as well as numerous relay neurons.⁽¹⁵⁾

As seen in cross section by light microscopy, the retina is represented by 10 layers: retinal pigmented epithelium, photoreceptor layer of rods and cones, external limiting membrane, outer nuclear layer, outer plexiform layer, inner nuclear layer, inner plexiform layer, ganglion cell layer, nerve