PERFORMANCE of FABA BEAN PARENTS and HYBRIDS GROWN UNDER FREE and Orobanche INFESTATION and MOLECULAR CHARACTERIZATION of O. crenata

By

HEND ABO EL-FETOUH RAMADAN GHANNAM

B.Sc. Agric. Sci. (Agronomy), Fac. Agric., Ain Shams Univ., 2003 M.Sc. Agric. Sci. (Agronomy) Fac. Agric., Cairo Univ., 2011

THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

In
Agricultural Sciences
(Agronomy)

Department of Agronomy
Faculty of Agriculture
Cairo University
EGYPT

2017

APPROVAL SHEET

PERFORMANCE of FABA BEAN PARENTS and HYBRIDS GROWN UNDER FREE and Orobanche INFESTATION and MOLECULAR CHARACTERIZATION of O. crenata

Ph.D. Thesis
In
Agricultural Sci. (Agronomy)
By

HEND ABO EL-FETOUH RAMADAN GHANNAM

B.Sc. Agric. Sci. (Agronomy), Fac. Agric., Ain Shams Univ., 2003 M.Sc. Agric. Sci. (Agronomy) Fac. Agric., Cairo Univ., 2011

APPROVAL COMMITTEE

Dr. AFAF MOHAMED TOLBA	
Professor of Agronomy, Fac. Agric., Ain Shams University	
Dr. AHMED MEDHAT MOHAMED AL-NAGGAR	
Professor of Agronomy, Fac. Agric., Cairo University	
Dr.MAGDYMOHAMEDSHAFIK	
Professor of Agronomy, Fac. Agric., Cairo University	
Dr.MAZHAR MOHAMED FAWZY ABDALLA	
Professor of Agronomy, Fac. Agric., Cairo University	

Date:4/4/2017

SUPERVISON SHEET

PERFORMANCE of FABA BEAN PARENTS and HYBRIDS GROWN UNDER FREE and *Orobanche* INFESTATION and MOLECULAR CHARACTERIZATION of *O. crenata*

Ph.D. Thesis
In
Agricultural Sci. (Agronomy)
By

HEND ABO EL-FETOUH RAMADAN GHANNAM

B.Sc. Agric. Sci. (Agronomy), Fac. Agric., Ain Shams Univ., 2003 M.Sc. Agric. Sci. (Agronomy) Fac. Agric., Cairo Univ., 2011

SUPERVISONCOMMITTEE

Dr. MAZHAR MOHAMED FAWZY ABDALLA Professor of Agronomy, Fac. Agric., Cairo University

Dr. MAGDY MOHAMED SHAFIK
Professor of Agronomy, Fac. Agric., Cairo University

Dr. SABAH MAHMOUD ATTIA

Head Research of Food Legumes FCRI, ARC, Giza, Egypt

ACKNOWLEDGMENT

First of all, ultimate thanks are due to ALLAH, who without his aid this work could not be done

I wish to express my deep gratitude and sincere appreciation to Dr. M.M.F. Abdalla, Professor of Agronomy and Plant Breeding Faculty of Agriculture, Cairo University, for his valuable guidance, supervision, diligent discussion and constructive-criticism throughout the course of this study and during preparation of the manuscript. Many thanks toDr. M.M. Shafik, Professor of Agronomy and Plant Breeding Faculty of Agriculture, Cairo University, for his supervision and advice throughout this study and preparing the manuscript. I am deeply grateful to Dr. Sabah M.Attia, Head of Research, Food Legumes Research, Dept., ARC, Giza, Egypt. for her supervision, guidance and valuable help throughout preparing the manuscript.

Thanks are also due to Dr. M.M. El-Hady, Previous head of Food Legumes Section, A.R.C. Giza for his sincere advice and help during this study.

Deep thanks to ICARDA biotechnology Laboratory for their help to finshing this works specially Dr. Alaa Hamawieh, Dr. Fouad Maalof and Fidaa Alo.

Many thanks to Dr. Ahamed El-Hosary Faculty of Agriculture, Banha University, for his valuable help.

My grateful thanks are also due to the members of Agronomy Department, Faculty of Agriculture, Cairo University and Food Legumes Section.

Finally, thanks due to my family, especially my parents for their encouragement and inspiration offered to me.

Name of Candidate: Hend Abo El-Fetouh Ramadan Ghannam Degree: Ph.D.

Title of Thesis: Performance of faba bean parents and hybrids grown under free and *Orobanche*

infestation and molecular characterization of O.crenata

Supervisors: Dr. Mazhar Mohamed FawzyAbdalla

Dr. Magdy Mohamed Shafik Dr. Sabah Mahmoud Attia

Department: Agronomy **Approval**: 4 /4/2017

ABSTRACT

The field experiments of the present study were carried out at Giza and Sids Research Station, Agricultural Research Center (ARC), Egypt during 2011/2012, 2012/2013 and 2013/2014 seasons. Six diverse faba bean (Vicia faba L.) varieties were used in a diallel mating design including reciprocals. In 2011/2012 season all possible crosses of diallel including reciprocals among the six faba bean parents were made after hand emasculation and pollination, under insect free cages. In 2012/2013 season, hybrid seeds and the six faba bean parents were sown under the insect free cage at Giza Research Station to produce F₂ seeds and re-hybridization was made to increase F₁ seeds.In 2013/2014season, parents, F₁'s and F₂'s were evaluated under both natural heavy *Orobanche* infested soils at Giza and under free fields at Giza and Sids in randomized complete block design with 3 replicates. Results showed significant differences among parents, F_1 's and F_2 's for all studied traits and these differences may be mainly due to the genetic diversity of the parents. The parents and their crosses would be interesting and prospective for improving seed yield and its components in faba bean. Based on the two estimates of heterotic effects (over mid and better parent), 6, 10,14, 28, 27, 25 and 8 crosses exhibited significantly positive heterotic effects for days to flowering, plant height, number of branches/plant, number of pods/plant, number of seeds/plant, seed yield/plant and 100-seed weight, respectively. The parental genotype Misr3 was a good general combiner for days to flowering and number of pods/plant in F_1 , and for number of seeds/plant and seed yield/plant in F_1 and F_2 generations. On the other hand, the parental genotype Cairo 25 was a good combiner for days to flowering, plant height, number of pods/plant, number of seeds/plant and seed yield/plant in F₁ and F₂ generations. Parent Nubaria 1 was good combiner for 100-seed weight in F₁ and F₂ generations. The cross (Cairo 5 x Misr 3) had significant or highly significant positive SCA effects in both F₁ and F₂ generations for number of pods/plant, number of seeds/plant, seed yield/plant and 100-seed weight. Reciprocal-cross differences occurred frequently in the F₁ and F₂ generations. Inbreeding gain was found in some F₂ materials and selection may be practiced to secure transgressive segregates with higher yield and heaver seed index. This research revealed the existence of wide genetic variation among Orobanche crenata plants from Egypt collected from faba bean naturally infested field. ISSR markers were suitable to study identifying genetic diversity among O. crenata individuals. The breeders have to consider this high genetic variation in O. crenata when they breed faba bean for tolerance/resistance to Orobanche.

Key words: Faba bean, Broomrape, Heterosis, Combining ability, Heritability, Inbreeding effect, ISSR.

CONTENTS

. Title	Page
INTRODUCTION	1
REVIEW OF LITERATURE	4
Variability of the faba bean host against <i>Orobanche</i>	1
parasitism	4
Variability of the <i>Orobanche</i> parasite	14
Genetics of faba bean host resistance/tolerance to	19
Orobanche parasite	19
Selection criteria for <i>Orobanche</i> resistance/tolerance	22
J	28
MATERIALS AND METHODS	47
. The hybridization studies	47
Molecular characterization of Orobanche creneta	55
using ISSR markers	33
RESULTS AND DISCUSSION	58
Experiment carried out in <i>Orobanche</i> infested field	58
at Giza Research Station	50
Significance of mean squares under Orobanche infested	58
field	
	58
	60
	66
	66
	68
<u>-</u>	70 74
•	74 79
• , ,	78 79
	78 78
	78 78
	78 78
	83
General combining ability	83
	87
	88
	INTRODUCTION REVIEW OF LITERATURE Variability of the faba bean host against <i>Orobanche</i> parasitism

6.	Components of variation in diallel	91
b.	Giza Research Station	95
1.	Significance of mean squares	95
2.	Performance of parents, F ₁ ,s and F ₂ ,s	97
3.	Performance of hybrids, (F ₁ ,s and F ₂ ,s)	97
4.	Combining ability effects	100
a.	General combining ability effects	100
b.	Specific combining ability effects	106
5.	Reciprocal effects	107
6.	Estimates of heterosis and heterobeltiosis	113
7.	Inbreeding effects	115
8.	Genetic components	120
3.	Biodiversity of Orobanche creneta using ISSR Markers	126
	SUMMARY	139
	REFERENCES	147
	ARABIC SUMMARY	

LIST OF TABLES

No.	Title	Page
1.	Origin, pedigree and some features of parental genotypes.	47
2.	Analysis of variance of combining ability	51
3.	Inter simple sequence repeat DNA primers used in the analysis of <i>O. crenata</i> populations.	55
4.	Significance of mean squares due to various sources of variation for the studied characters in <i>Orobanche</i> infested field at Giza Research Stationin 2013/2014 season	59
5.	Mean performance of parents and F ₂ :sfor following data, days to flowering, plant height and number of branches/ plant during 2013/2014 season in <i>Orobnche</i> infested field at Giza Research Station	63
6.	Mean performance of parents and F ₂ ·sfor following data, Pods/plant, Seeds/plantand Seed yield/ plant during 2013/2014 season in <i>Orobnche</i> infested field at Giza Research Station	64
7.	Mean performance of parents and F ₂ ·sfor following data, 100-seed weight, <i>Orobanche</i> spike/plot and <i>Orobanche</i> spike dry weight/plot during 2013/2014 season in <i>Orobanche</i> infested field at Giza Research Station	65
8.	Estimates of the general combining ability effects (gi) of parental lines in the F ₂ crosses for studied traits (2013/2014 season) in <i>Orobnche</i> infested field at Giza Research Station	69
9.	Estimates of the specific combining ability effects (Sij) of the F2 crosses for studied traits (2013/2014 season)in <i>Orobnche</i> infested field at Giza Research Station.	72
10.	Estimates of reciprocal-cross differences effects (Rij) of the F ₂ crosses for studied traits (2013/2014 season) in <i>Orobnche</i> infested field at Giza Research Station	73
11	Estimates of genetic parameters for studied traits in	77

12.	F ₂ diallel crosses (2013/2014 season) in <i>Orobnche</i> infested field at Giza Research Station	80
13.	Mean performance of parents and their crosses in F ₂ generation of faba bean for following data, days to flowering, plant height and number of branches/plant(2013/2014 season) in free field at Sids Research Station	82
14.	Mean performance of parents and their crosses in F ₂ generation of faba bean for following data, Pods/plant, Seeds/plant, Seed yield/ plant and 100-seed weight (2013/2014 season) in free field at Sids Research Station	83
15.	Estimates of the general combining ability effects (gi) of parental lines in the F ₂ crosses for studied traits (2013/2014 season) at Sids Research Station	86
16.	Estimates of specific combining ability effects (Sij) of diallel crosses for studied traits of F ₂ generation (2013/2014 season) at Sids Research Station	89
17.	Estimates of reciprocal-cross differences effects (Rij) of diallel crosses for studied traits of F_2 generations ((2013/2014) season at Sids Research Station	90
18.	Estimates of genetic parameters for studied traits in F ₂ diallel crosses (2013/2014 season) at Sids Research Station	94
19.	Mean squares for the studied characters in parents, F ₁ , F ₂ and their reciprocals for diallel cross 2013/2014 season open field at Giza Research Station	96
20.	Mean performance of parents and their crosses in F ₁ and F ₂ generations of faba bean for studied traits(2013/2014 season) in free field at Giza Research Station	101

21.	Mean performance of reciprocal crosses in F_1 and F_2 generations of faba bean for studied traits(2013/2014 season) in free field at Giza Research Station.	102
22.	Mean performance of parents and their crosses in F_1 and F_2 generations of faba bean for studied traits(2013/2014 season) in free field at Giza Research Station.	103
23.	Mean performance of reciprocal crosses in F_1 and F_2 generations of faba bean for studied traits(2013/2014 season) in free field at Giza Research Station.	104
24.	General combining ability effects (gi) of faba bean parental genotypes for studied traits in 2013/2014 season at Giza Research Station	105
25.	Specific combining ability effects (Sij) of faba bean parental genotypes for Days to flowering, plant height, Branches/ plant and Pods/plant2013/2014 seasonat Giza Research Station	108
26.	Specific combining ability effects (Sij) of faba bean parental genotypes for Seeds/plant, Seed yield /plant and 100-seed weight2013/2014 season at Giza Research Station	109
27.	Reciprocal-cross differences (Rij) s in F ₁ and F ₂ crosses for Days to flowering, plant height, Branches/ plant and Pods/plant 2013/2014 season at Giza Research Station	111
28.	Reciprocal-cross differences (Rij) s in F ₁ and F ₂ crosses for Seeds/plant, Seed yield /plant and 100-seed weight 2013/2014 season at Giza Research	112
29.	Station	116