

A THESIS ENTITLED

SPECTROPHOTOMETRIC DETERMINATION OF THE DRUG SILDENAFIL CITRATE USING CHROMOTROPIC ACID AZO DYES

PRESENTED BY ASMAA RAGB SENOSY KHALID

FOR

Partial Fulfillment for the Degree of

Master of Science

TO
Cairo University
Faculty of Science
2010

APPROVAL SHEET FOR SUBMISSION

Title of the M. Sc thesis:

"SPECTROPHOTOMETRIC DETERMINATION OF THE DRUG SILDENAFIL CITRATE USING CHROMOTORPIC ACID AZO DYES"

Name of the candidate: Asmaa Ragb Senosy Khalid

This thesis has been approved for submission by the supervisors:

Signature

1) Prof. Dr. Y. M. Issa

Professor of Analytical and Inorganic Chemistry

Chemistry Department

Faculty of Science

Cairo University

2) Dr. W. F. El-Hawary

Assistant Professor of Analytical Chemistry

Chemistry Department

Faculty of Science

Cairo University

3) Dr. A. F. A. Youssef

Assistant Professor of Analytical Chemistry

Chemistry Department

Faculty of Science

Cairo University

Prof. Dr. Mohamed Ahmed Badawy

Chairman of Chemistry Department Faculty of Science–Cairo University

ABSTRACT

Name: Asmaa Ragb Senosy Khalid

Title of Thesis: Spectrophotometric Determination of the Drug Sildenafil Citrate

Using Chromotorpic Acid Azo Dyes.

Degree: Master of Science (M. Sc).

Simple and highly sensitive spectrophotometric methods have been developed for the quantitative determination of sildenafil citrate (SC), Viagra, in pure form and in pharmaceutical formulations, through ion-associate formation reactions with mono-chromotropic acid azo dyes, chromotrope 2B (I) and chromotrope 2R (II) and ion-pair reactions with bi-chromotropic acid azo dyes, 3-phenylazo-6-o-carboxyphenylazo-chromotropic acid (III),bis-3,6-(ohydroxyphenylazo)-chromotropic acid (IV), bis-3,6-(p-N,Ndimethylphenylazo)-chromotropic acid (V) 3-phenylazo-6-oand hydroxyphenylazo-chromotorpic acid (VI). The reaction conditions were studied and optimized. The methods were successfully applied to the analysis of commercial tablets (Vigoran) and the recovery study reveals that there is no interference from the common excipients that are present in tablets. Statistical comparison of the results was performed with regard to accuracy and precision using student's t- and F-tests at 95% confidence level. Solid complexes of SC were prepared, and then subjected to elemental analysis, IR and UV/Vis measurements to elucidate the structure of these complexes.

Key words: Spectrophotometry, Silder	nafil citrate, Chromotropic acid azo dyes,
Ion-pair, Ion-associate.	
Supervisors:,.	,
	Prof. Dr. Mohamed Ahmed Badawy

Chairman of Chemistry Department Faculty of Science–Cairo University

SUPERVISORS

1) Prof. Dr. Y. M. Issa

Professor of Analytical and Inorganic Chemistry

Chemistry Department

Faculty of Science

Cairo University

2) Dr. W. F. El-Hawary

Assistant Professor of Analytical Chemistry

Chemistry Department

Faculty of Science

Cairo University

3) Dr. A. F. A. Youssef

Assistant Professor of Analytical Chemistry

Chemistry Department

Faculty of Science

Cairo University

ACKNOWLEDGEMENT

The authoress is deeply indebted to **Prof. Dr. Y. M. Issa**, professor of Analytical and Inorganic Chemistry, Cairo University for suggesting the research problem, supervising the work, continuous encouragement and kindness.

I express my deep gratitude to **Dr. W. F. El-Hawary**, Assistant Professor of Analytical Chemistry, Faculty of Science, Cairo University for his honest supervision superb guidance, valuable advises throughout the whole work.

My special thanks and sincere appreciation to **Dr. A. F. A. Youssef,** Assistant Professor of Analytical Chemistry, Faculty of Science, Cairo University for his interest and help. I am much indebted to him for the follow-up and revision of the thesis.

Finally, I would like to thank my family, specially my parents for their encouragement and support.

Publications

Part of the original work of this thesis has been published in a paper

1- Spectrophotometric determination of sildenafil citrate in pure form and in pharmaceutical formulation using some chromotropic acid azo dyes.

Y.M. Issa, W.F. El-Hawary, A.F.A. Youssef, A.R. Senosy, Spectrochimica Acta Part A, 75, 1297 (2010).

Also another part of the work in this thesis is under publication.

CONTENTS

	Pages
List of Tables	
List of Figures.	
Abbreviations	
Statement and Objectives of the Work	
CHAPTER I: INTRODUCTION	
I.1. Pharmaceutical Analysis	1
I.2. Sources of Information in Pharmaceutical Analysis	1
I.3. Specialized Analytical Methods and Equipments	1
I.4. Spectrophotometric Methods Used for Pharmaceutica	
Analysis	4
I.4.1. Visible Absorption (colorimetry) Assays	4
I.4.2. Spectrophotometric Assay in the Ultraviolet Region	5
CHAPTER II: LITERATURE SURVEY	
II.1. Literature Survey on the Methods of Determination of	
Sildenafil Citrae	8
II.1.1 Spectrophotometric Methods	8
II.1.2. Electroanalytical Methods	10
II.1.3. Chromatographic Methods	14
II.1.4. Miscellaneous Methods	22
II.2. Spectrophotometric Determination of some Pharmaceutica	
Compounds Using Chromotrop Acid Azo Dyes	25
II.3. Spectrophotometric Determination of some Pharmaceutical	
Compoundsthrough Ion-Pair Complexation Reactions	31
CHAPTER III: EXPERIMENTAL	
III.1. Materials and Reagents	36

III.2. Solutions.	37
III.2.1. Sildenafil Citrate Solution	37
III.2.2. Chromotropic Acid Azo Dyes Solutions	37
III.2.3. Acidic Solutions.	37
III.2.4. Clark and Lubs Buffer Solutions	37
III.2.5. Preparation of Vigoran Solution (Sildenafil Citrate)	37
III.3. Apparatus.	38
III.4. General Procedures for Determination of Sildenafil Citrate	38
III.4.1. Mono-Azo Dyes of Chromotropic Acid (I and II)	38
III.4.2. Bi-Azo Dyes of Chromotropic Acid (III-VI)	38
III.5. Optimum Conditions for the Ion-associates Formation	39
III.5.1. Effect of Acidity	39
III.5.2. Effect of the Reagent Concentration	39
III.5.3. Effect of the Extracting Solvents	40
III.5.4. Effect of Sequence of Mixing	40
III.5.5. Selection of the Suitable Wavelength	40
III.5.6. Effect of Time and Temperature	40
III.5.7. Influence of the Foreign Ions	41
III.6. Molecular Structure of the Ion-Associates	41
III.7. Spectral Characteristics of the Ion-Associates Complexes	41
III.8. Obedience to Beer's Law	42
III.9. Analytical Applications	43
III.10. Standard Addition Method	43
III.11. Preparation of Solid Complexes	43
III.12. Evaluation of Association Constant and Free Energy	
Change	44
CHAPTER IV: RESULTS AND DISCUSSION	
IV.1. Spectrophotometric Determination of Sildenafil Citrate Using	
Chromotropic Acid Mono- and Bi-Azo Dyes	47
•	

IV.1.1. Selection of the Maximum Wavelength	47
IV.1.2. Effect of the Extracting Solvent	49
IV.1.3. Effect of Acidity	51
IV.1.4. Optimization of the Extraction Conditions	52
IV.1.5. Effect of the Reagent Concentration	53
IV. 1.6. Sequence of Mixing	53
IV.1.7. Effect of Time and Temperature	54
IV.1.8. Stoichiometry of the Complex	56
IV.1.9. Effect of Surfactant	57
IV.1.10. Analytical Parameters	57
IV.1.11. Reproducibility	62
IV.1.12. Influence of Foreign Ions	64
IV.1.13. Application to Pharmaceutical Preparations	65
IV.1.14. Spectral Characteristics of the Ion-Associate Complex	67
IV.1.15. Evaluation of Apparent Formation Constant of the	
Proposed Sildenafil Citrate Complexes from	
Spectrophotometric Measurements	69
IV.1.16. Determination of Association Constant and Free Energy	
Change	71
IV.2. Spectral Studies on the Investigated SC Solid Complexes	73
IV.2.1. Microanalysis of SC Solid Complexes	73
IV.2.2. Visible Spectra Complexes of SC Solid	73
IV.2.3. Infrared Spectra of SC Complexes	76
IV.2.3a. OH Bands	76
IV.2.3b. Absorption in the 1700–1400 cm ⁻¹ Region	77
IV.2.3c. Absorption in the 1400–600 cm ⁻¹ Region	77
IV.3. Inter Comparison with the Previously Reported	
Spectrophotometric Methods	81
IV.4. Conclusion.	81

Summary	83
References	85
Arabic Summary	97

LIST of TABLES

		Page
Table 1	Analytical parameters for determination of sildenafil citrate using chromotropic acid mono- and bi-azo dyes.	60
Table 2	Evaluation of precision of the proposed methods on pure samples of sildenafil citrate using reagents I-VI.	63
Table 3	Inter-day and intra-day precision of sildenafil citrate in pure form using chromotropic acid mono-and bi-azo dyes.	64
Table 4	Effect of common excipients of the tablet on the absorbance of ion-associates using reagents I-VI.	65
Table 5	Determination of sildenafil citrate in pharmaceutical forms (Vigoran tablet) using reagents I-VI.	66
Table 6	Determination of sildenafil citrate in pharmaceutical preparation, applying the standard addition technique using reagents I-VI.	68
Table 7	The spectral properties of ion-associate complexes formed between sildenafil citrte with reagents I-VI,	69
Table 8	The association (K_c) and formation (K_f) constants and the calculated free energy for SC ion-pair and ion-associate complexes with chromotropic acid. mono- and bi-azo dyes	70

Table 9	Data of elemental analysis of some investigated SC	74
	complexes.	
Table 10	Absorption data of some chromotropic acid azo dyes and	76
	their complexes with sildenafil citrate.	
Table 11	Assignment of IR bands of SC and its complexes with	78
	chromotropic acid azo dyes.	
Table 12	Comparison of the proposed methods with the existing	82
	spectrophotometric methods for the determination of	
	sildenafil citrate.	

LIST of FIGURES

		Page
Fig. 1	Ultraviolet spectrum of sildenafil citrate solution (4.2x10 ⁻⁵ M) in 30% v/v methanol-water.	8
Fig. 2	Structure of sildenafil citrate with atom numbering.	24
Fig. 3	Absorption spectra of reagents I and II in aqueous media and their resulting complexes with SC.	47
Fig. 4	Absorption spectra of reagents III-VI in aqueous media and their resulting complexes with SC.	48
Fig. 5	Effect of extraction solvent on the absorption spectra of SC-I [A] and SC-II [B] ion-associates.	49
Fig. 6	Effect of extraction solvent on the absorption spectra of SC-III [C] and SC-IV [D] ion-pairs.	50
Fig. 7	Effect of extraction solvent on the absorption spectra of SC-V [E] and SC-VI [F] ion-pairs.	51
Fig. 8	Influence of the pH values on the absorbance of SC complexes with reagents I-VI.	52
Fig. 9	Effect of reagent concentration (0.005 M) on the absorbance of SC-(I–VI) complexes in methylene chloride.	54
Fig. 10	Effect of time on the formation of SC-(I-VI) complexes.	55
Fig. 11	Effect of temperature on the stability of SC ion-	56

associate with reagents I–VI.

Fig. 12	Job's method of SC ion-associate in methylene chloride	57
	using reagents I–VI.	
Fig. 13	Beer's law plots for SC determination using reagents I and II.	58
Fig. 14	Beer's law plots for SC determination using reagents III-VI.	59
Fig. 15	Ringbom plots of SC ion-associate with reagents I and II.	61
Fig. 16	Ringbom plots of SC ion-pairs with reagents III-VI.	62
Fig. 17	Benesi-Hildebrand plots for SC ion-pair with bi-azo	72
	chromotropic acid reagents (III-VI).	
Fig. 18	Absorption spectra of the reagents I and II and their	75
	complexes with SC in DMF.	
Fig. 19	Absorption spectra of the reagents IV-VI and their complexes with SC in DMF.	75
Fig. 20	IR-spectra of the drug sildenafil citrate and reagents I and II and their complexes with sildenafil citrate (SC-I-SC-II).	79
Fig. 21	IR-spectra of reagents III-V and their complexes with sildenafil citrate.	80