

127, 17 27, 17 (20) 77, 17 (20

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

Information Netw. " Shams Children Sha شبكة المعلومات الجامعية @ ASUNET بالرسالة صفحات لم ترد بالأص

COMPUTER-AIDED, REAL-TIME DATA ACQUISITION SYSTEM FOR OPERATION AND CONTROL OF REACTIVE POWER COMPENSATORS

By

Eng. Khalid Ali Abdel-momen Ali

A thesis submitted in partial Fulfillment For The Requirements of a **Master Degree** in Electrical Power Engineering

Supervisors

Prof. Dr.

Ahmed Abdel-mageed Hassan

Elect. Power & Machines Dept. Faculty of Engineering Mansoura University Prof. Dr.

Soliman Ahmed Farghal

Elect. Power & Machines Dept.
Faculty of Engineering
Mansoura University

Assoc. Prof. Dr.

Gabr Mohamed Abdel-salam

Elect. Power & Machines Dept. Faculty of Engineering Mansoura University

B 9.04

1995

COMPUTER-AIDED, REAL-TIME DATA ACQUISITION SYSTEM FOR OPERATION AND CONTROL OF REACTIVE POWER COMPENSATORS

By

Eng. Khalid Ali Abdel-momen Ali

A thesis submitted in partial Fulfillment For The Requirements of a **Master Degree** in Electrical Power Engineering

Supervisors

Prof. Dr.

Ahmed Abdel-mageed Hassan

Elect. Power & Machines Dept.
Faculty of Engineering
Mansoura University

Prof. Dr.

Soliman Ahmed Farghal

Elect. Power & Machines Dept.
Faculty of Engineering
Mansoura University

Assoc. Prof. Dr.

Gabr Mohamed Abdel-salam

Elect. Power & Machines Dept. Faculty of Engineering Mansoura University

1995

SUPERVISION

RESERCHER NAME: KHALID ALI ABDEL-MOMEN ALI

THESIS TITLE:

COMPUTER-AIDED, REAL-TIME DATA ACQUISITION SYSTEM

FOR OPERATION AND CONTROL OF REACTIVE POWER

OMPENSATORS.

SUPERVISOPS

NAME	POSITION	SIGNATURE
1 Prof.Dr. Ahmed Abdel-mageed Hassan	Prof. of Elect. Power & Machines Faculty of Engineerning Mansoura University	Hassa
2 Prof. Dr. Soliman Ahmed Farghal	Prof. of Elect. Power & Machines Faculty of Enginreering Mansoura University	Farghal
3 Asso. Prof. Dr. Gabr Mohamed Abdel-salam	Dr. of Elect. Power & Machines Dep. Faculty of Engineering Mansoura University	<u>Co</u>

EXAMINATION COMMITTEE

RESERCHER NAME: KHALID ALI ABDEL-MOMEN ALI

THESIS TITLE:

COMPUTER-AIDED, REAL-TIME DATA ACQUISITION SYSTEM

FOR OPERATION AND CONTROL OF REACTIVE POWER

COMPENSATORS.

EXAMINATION DATE:

THESIS GRADE:

EXAMINATION COMMITTEE

NA	ME	POSITION	SIGNATURE
1 Prof. Dr. El-sayed H. F	Cl-konyaly	Head of Aut. Control & Computers Dep. Faculty of engineering Mansoura University	Eleconyalz
2 Dr. Kamel Yasser	a Ali Mostafa	Maniger of control center for operation	gree
3 Prof.Dr. Ahmed Abdel Hassan	-mageed	Prof. of Elect. & Machines Dep. Faculty of Engineerning Mansoura University	bassa
4 Prof. Dr. Soliman Al	nmed Farghal	Prof. of Elect. & Machines Dep. Faculty of Engineerning Mansoura University	
5 Ass. Prof. Gabr Moha	med Abdel-salam	Dr. of Elect. & Machines Dep. Faculty of Engineerning Mansoura University	Co

ACKNOWLEDGEMENTS

Thanks to GOD who creates this work by guiding me to the frank way and by offering assistance of honest professors.

The author wishes to express my sincere gratitude to Prof. Dr.

Ahmed Abdel-mageed hassan for his supervision, courtesy, guidance,
valuable advices and contributions in developing this work.

The author wishes to express my sincere gratitude to Prof. Dr. Soliman Ahmed Farghal for his supervision and helpful advices.

The author wishes to express my sincere gratitude to Asso.

Prof. Dr. Gabr Mohamed Abdel-salam for his supervision, helpful guidance and valuable advices.

Finally, it is may pleasure to record may sincere thanks to my parents for supporting and encouraging me through out my work.

CONTENTS

GLOSSARY OF ABBREVIATIONS	1
INTRODUCTION	4
1-1 GENERAL	4
1-2 HISTORICAL BACKGROUND	5
1-3 OBJECTIVES	6
1-4 CONTRIBUTIONS	7
1-5 SCOPE OF THE THESIS	7
REACTIVE POWER COMPENSATION	10
2-1 REACTIVE POWER FUNDAMENTALS	10
2-1-1 NETWORK COMPONENT CHARACTERISTICS	10
2-1-2 RELATIONSHIP OF VOLTAGE WITH REACTIVE POWER	11
2-2 REACTIVE POWER COMPENSATION IN TRANSMISSION SYSTEMS	13
2-2-1 TRANSMISSIONS WITH LONG OVERHEAD LINES	13
2-2-2 EXTENSIVE CABLE NETWORKS	19
2-2-3 HVDC TERMINAL STATIONS	20
2-3 REACTIVE POWER COMPENSATION IN DISTRIBUTION SYSTEMS	20
2-3-1 URBAN, RESIDENTIAL, AND RURAL SYSTEMS	21
2-3-2 HIGH-POWER INDUSTRIAL SYSTEMS	21
2-3-3 POWER FACTOR CORRECTION AND PHASE BALANCING OF	
UNSYMMETRICAL LOADS	22
2-4- REACTIVE POWER COMPENSATION DEVICES	24
2-4-1 GENERATORS	24
2-4-2 SHUNT CAPACITORS	24
2-4-3 SYNCHRONOUS CONDENSERS	25
2-4-4 THYRISTOR-CONTROLLED STATIC COMPENSATORS	25
2-4-5 SERIES CAPACITORS	27
2-5 THYRISTOR CONTROLLER	27
2-5-1 METHODS OF TURN ON	28
2-5-2 RATINGS OF THYRISTOR	28
2-5-3 TRIAC	29
2-5-4 THYRISTOR PROTECTION CIRCUITS	30
2-5-5 GATING ENERGY	32

DATA ACQUISITION SYSTEM	40
3-1 GENERAL	40
3-2 FUNDAMENTALS OF DAS	40
3-2-1 BASIC ELEMENTS OF DAS	40
3-2-2 SERIES SYSTEM	41
3-2-3 SIMULTANEOUS SAMPLING SYSTEM	42
3-2-4 PARALLEL SYSTEM	42
3-2-5 RESOLUTION	42
3-2-6 SAMPLING RATE AND ALIASING	43
3-2-7 SOFTWARE PROGRAMS	44
3-3 SYSTEM OVERVIEW	44
3-3-1 THE MEASUREMENT SYSTEM	45
3-3-2 INSTALLATION AND SETTING UP THE DAS	46
3-3-3 SYSTEM CONSIDERATIONS	47
3-3-4 HARDWARE DESCRIPTION	47
3-3-5 SYSTEM SOFTWARE	49
DEVELOPMENT OF STATIC VAR COMPENSATOR AND THE CONTROL	
TECHNIQUE TO REDUCE HARMONICS AND SWITCHING TRANSIENTS	53
4-1 GENERAL	53
4-2 DEVELOPMENT OF SVC TO REDUCE GENERATED HARMONICS	
AND SWITCHING TRANSIENT	53
4-2-1 THYRISTOR-CONTROLLED REACTOR (TCR)	53
4-2-2 REDUCTION OF TRANSIENT OVERVOLTAGE	55
4-2-3 THE SUBSTEPS OF THYRISTOR-SWITCHED CAPACITOR	56
4-2-4 INTEGERIZATION PROBLEM	56
4-2-5 REDUCTION OF DYNAMIC SWITCHING OPERATIONS	58
4-2-6 OPERATION STRATEGY FOR PROPOSED SVC	59
4-3 ON-LINE CONTROL TECHNIQUE OF THE DEVELOPED SVC	60
4-3-1 PROPOSED OPERATION AND CONTROL SYSTEM FOR SVC	60
4-3-2- ZERO-CURRENT DETECTOR	61
4-3-3 FIRING CIRCUIT	62
4-3-4 ELECTRONIC MEASUREMENT OF POWER FACTOR	63

CONTROL CIRCUIT	. 75
5-1 GENERAL	7 5
5-2 MODEL OF TRANSMISSION LINE	75
5-3 DEVELOPED SVC	7 5
5-4 SIMPLE LOAD MODEL	7 7
5-5 THE PERSONAL COMPUTER AND DATA ACQUISITION SYSTEM	. 7 7
5-6 CONTROL CIRCUIT	78
5-6-1 ZERO-CURRENT DETECTOR CIRCUIT	78
5-6-2 FIRING CIRCUIT	79
5-7 POWER FACTOR MEASURING CIRCUIT	79
5-8 THE SOFTWARE PROGRAM	81
5-9 OFF-LINE STUDY	82
5-10 RESULTS	82
5-11 APPLICATION ON AN INDUSTRIAL FACTORY AT MANSOURA	86
5-12 DISCUSSION OF RESULTS	86
OPERATING OF SVC WITH PRESENCE OF HARMONICS	108
6-1 GENERAL	108
6-2 SOURCES OF HARMONICS	109
6-3 PROBLEMS CAUSED BY HARMONICS	109
6-4 CAPACITORS AND RESONANCE PROBLEMS	110
6-5 CONSIDERATIONS OF THE SVC INSTALLATION	111
6-6 HARDWARE REQUIREMENTS FOR DATA ACQUISITION AND	
MEASUREMENTS	112
6-7 LOAD MODELING AT FUNDAMENTAL AND HARMONIC FREQUENCE	IES 113
6-7-1 MODELING AT THE FUNDAMENTAL FREQUENCY	113
6-7-2 CALCULATION OF FEEDER RESISTANCE AT HARMONIC	
FREQUENCIES	114
6-7-3 MODELING AT HARMONIC FREQUENCIES	115
6-8 PROPOSED GENERAL OPERATING STRATEGY OF SVC FOR	
REACTIVE POWER COMPENSATION WITH PRESENCE OF	
HARMONICS AND RESONANCE AVOIDANCE	116
CONCLUSIONS	12
APPENDIX A	123
APPENDIX B	125
REFERENCES	143

GLOSSARY OF ABBREVIATIONS

V : Line voltage

V1 : Sending end voltage

Vz : Receiving end voltage

E : Peak applied voltage

I : Line current

 ϕ : Phase angle between voltage and current

PF : Power factor

Y : Load admittance

G : Load conductance

b : Load susceptance

R : Line resistance

X : Line reactance

Z : Line impedance

L : Inductance of circuit

P : Real power

Q : Reactive power

θ : Power angle

p : Surge impedance load (SIL)

SVC : Static var compensator

TCR : Thyristor controlled reactor

TSC : Thyristor switched capacitor

TSR : Thyristor switched reactor

SS : Substep of thyristor switched capacitor

FC : Fixed capacitor

 ΔQ : Change in reactive power injection

s : Short circuit capacity

S.C : Short circuit

 B^{γ} : Compensating susceptance

DAS : Data Acquisition system

AMUX : Analog multiplexer

SHA : Sample and hold amplifier

ADC : Analog to digital converter

RMS : Root mean square value

f : Normal frequency

fa : The fundamental aliasing frequency

fs : Sampling frequency

N : Number of samples

I/O : Input/Output

RAM : Read only memory

ROM : Random access memory

PC : Personal computer

BCD : Binary coded decimal

Qm : Reactive power rating of substep

Ns : Number of substeps

Qi : Net reactive power required to arrive at unity PF and to

balance load between phases.

QL' : Transmitted reactive power after compensation

x : Fraction ranged from 0 to 0.5

UJT : Unijunction transistor

f : Resonant frequency of capacitor-inductor circuit