

COLOR REPRODUCTION OF CAD-CAM LITHIUM DI-SILICATE VENEERS WITH DIFFERENT THICKNESS AND DEGREE OF TRANSLUCENCY

A Thesis submitted for the partial fulfillment of the Master's Degree Requirements in Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University

By

Sahar Hassan Fikry

B.D.Sc.

Faculty of Dentistry Ain Shams University, **2007**

Faculty of Dentistry Ain Shams University 2017

SUPERVISORS

Dr. Tarek Salah El-Din Morsy

Assistant Professor of Crown and bridge, Ain Shams University

Dr. Amr Saleh El Etreby

Lecturer of Crown and bridge,
Ain Shams University

قياس درجة مطابقة لون الوجوه التجميلية الخزفية المصنعة من دى سيليكات الليثيوم بطريقة الكاد كام باختلاف السمك ودرجة الشفافية

رسالة

مقدمة إلى كلية طب الفم والأسنان - جامعة عين شمس الإستيفاء متطلبات الحصول على درجة ماجستير في التيجان والجسور

مقدمة من

الطبيبة / سهرحسن فكري غريب

بكالريوس طب الفم والأسنان جامعة عين شمس - ٢٠٠٧

كلية طب الفم و الأسنان جامعة عين شمس ٢٠١٧

تحت إشراف

أ.م.د طارق صلاح مرسي

أستاذ مساعد بقسم التيجان والجسور

كلية طب الأسنان- جامعة عين شمس

د. عمرو صالح الاتربي

مدرس بقسم التيجان والجسور

كلية طب الأسنان - جامعة عين شمس

Acknowledgement

First and foremost, I would like to express my sincere gratitude to my advisor Prof. Dr. Tarek Salah Morsi, Assistant Professor of Crown & Bridge, Faculty of Dentistry, Ain Shams University, for the continuous support of my study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for this study.

I owe a great deal of appreciation to Dr. Amr Saleh El Etreby, Lecturer of Crown and bridge, Faculty of Dentistry, Ain Shams University for his patient guidance, enthusiastic encouragement and useful critiques of this research work.

Special thanks also goes to my colleague Dr.Hesham Sabet, Assistant lecturer of fixed prosthodontics, Faculty of Dentistry, Future University for his assistance & help in the methodology of this study.

Last but not least, I must express my very profound gratitude to my family, friends, and colleagues for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them.

Thank you.

CONTENTS

P	age
LIST OF TABLES	III
LIST OF FIGURES	IV
INTRODUCTION	1
REVIEW OF LITERATURE	3
STATEMENT OF PROBLEM	48
AIM OF THE STUDY	49
MATERIALS AND METHODS	50
RESULTS	68
DISCUSSION	78
SUMMARY AND CONCLUSION	85

REFERENCES	88
ARABIC SUMMARY	-

LIST OF TABLES

Table No.	Title	Page
1	The Materials, Brands, and Manufactures used in this study	50
2	Samples grouping	53
3	Firing parameters crystallization/glaze LT/HT	57
4	Means and standard deviations of ΔE of e.max CAD shade A1 low translucency (LT) and high translucency (HT)	69
5	Two way ANOVA showing effects of thickness, translucency and the interaction between them, shade A1	70
6	One way ANOVA, multiple comparisons, Bonferroni, ΔE (shade A1) low translucency	72
7	One way ANOVA, multiple comparisons, Bonferroni, ΔE (shade A1) high translucency	73
8	Means and standard deviations of ΔE e.max CAD shade BL1 low translucency (LT) and high translucency (HT)	73
9	Two way ANOVA showing effects of thickness, translucency and the interaction between them, shade BL1	75
10	One way ANOVA, multiple comparisons, Bonferroni, ΔE (shade BL1) low translucency	77
11	One way ANOVA, multiple comparisons, Bonferroni, ΔE (shade BL1) high translucency	77

LIST OF FIGURES

Fig. No.	Title	Page
1	Schematic drawing representing the CIELAB color space	4
2	IPS e.max CAD Blocks	51
3	RelyX Veneer Cement	52
4	Composite used for base fabrication	52
5	ISOMET 4000 microsaw, buehler, USA	54
6	Cutting procedure	55
7	Verified thickness with manual micrometer	56
8	IPS e.max crystall/glaze paste & Liquid (Ivoclar vivadent)	57
9	Applying the glaze	58
10	Crystallization cycle / Programat P300 Ivoclar Vivadent	58
11	Glazed Discs	59
12	IPS Ceramic Etching Gel; Ivoclar Vivadent, Schaan, Liechtenstein	60
13	Etching step	60
14	A periodontal probe measuring a 2mm deep mold for composite substrate fabrication	61
15	Fabrication of the composite base	62
16	Composite Base	63
17	Fabrication of the Cement layer	64
18	Foundation (Composite + Cement Layer)	65
19	Vita EasyShade Advance; Vident	66
20	Color measuring process	67
21	Mean ΔE for different thickness and translucency,	69

Fig. No.	Title	Page
	shade A1	
22	Two way ANOVA showing effect of change of thickness in each translucency (shade A1)	71
23	Two way ANOVA showing effect of change of translucency in each thickness (shade A1)	71
24	Mean ΔE for different thickness and translucency, shade BL1	74
25	Two way ANOVA showing effect of change of thickness in each translucency (shade BL1)	75
26	Two way ANOVA showing effect of change of translucency in each thickness (shade BL1)	76

INTRODUCTION

INTRODUCTION

Searching for beauty and self-improvement nowadays is no longer considered a sign of self-indulgence or vanity. It became socially acceptable as it is an investment in our health and well-being. A charming smile can completely affect your fate and success in life by being confident and having a high self-esteem. So in any esthetic treatment the failure to satisfy the patient's expectation of appearance and function of the final results may damage his or her ego. (1, 2)

The person's character is reflected through his smile. Which should be in harmony with the lips and face to look completely natural. The dentist's perception, talent, artistic flare and skills in listening to the specific desires of his or her patient help to create a smile that suits the face and personality of each individual patient to avoid constructing prototypes. (2)

The ultimate goal in any dental treatment should be as conservative as possible to obtain the desired result. The same is true for bonded porcelain (porcelain veneers). Ideally, none or only a minimal amount of tooth structure should be removed. One decision that always needs to be considered is whether adjunctive orthodontics should be completed to place the teeth in the ideal position so that there is minimal or no reduction for bonded porcelain. (3,4)

Porcelain veneers' preparations are always dictated 3-dimensionally by how the final restoration is placed within the frame of the face, lips, and gingiva. This is determined by smile design with patient's input and requirements that needs to be verified functionally. So the clinician should work backward and remove tooth structure based on the specific material requirements for Space (ie, thickness of the restorative material). (3,5)