Acute Demyelinating Disorders in Children

Essay submitted for partial fulfillment of the master degree of Neuropsychiatry

By

Mona Ibrahim Mahmoud Ammar M.B. B.CH.

Under supervision of

PROF. DR. TAHA KAMEL ALLOUSH

Professor of Neurology and Psychiatry

Faculty of medicine –Ain-Shams University

PROF.DR. SALMA HAMED KHALIL

Professor of Neurology and Psychiatry
Faculty of medicine-Ain-Shams University

DR.LOBNA M. EL-NABIL EL-SAYED

Assistant Professor of Neurology and Psychiatry
Faculty of medicine-Ain-Shams University
Ain-Shams University
Faculty of medicine
2012

List of abbreviations

ACTM Acute Complete Transverse MyelitisADEM Acute Disseminated Encephalomyelitis

AIDP Acute Inflammatory Demyelinating Polyneuropathy

AMAN Acute Motor Axonal Neuropathy

AMSAN Acute Motor Sensory Axonal Neuropathy

APTM Acute Partial Transverse Myelitis

ASFSN Acute Small Fiber Sensory Neuropathy

ATM Acute Transverse Myelitis

ANCA Anti Neutrophil Cytoplasm Antibodies

APCs Antigen Presenting Cells

APS Antiphosphlipid Syndrome

AZA Azathioprine

BCS Baolconcentric Sclerosis

BBE Bickerstaff's Brainstem Encephalitis

BBB Blood Brain Barrier

CNS Central Nervous System

CSF Cerebrospinal Fluid

MTX Chemotherapeutic Agent Mitoxantrone

CIDP Chronic Inflammatory Demyelinating Poly-

Radiculo-Neuropathy

CDMS Clinically Definite Multiple Sclerosis

CIS Clinically Isolated Syndrome

CMAP Compound Muscle Action Potential

CT Computerized Tomography

CNP Cyclic Nucleotide Phosphodiesterase

CMV Cytomegalo Virus

DWI Diffusion-Weighted

DPT Diphtheria, Pertussis and Tetanus

DMT Disease Modifying Therapies

DEM Disseminated Encephalomyelitis

DIS Dissemination in Space

DNA Double Stranded Deoxyribonucleic Acid

EEG Electroencephalography

EMG Electromyography

EBV Epstein Barr Virus

EMA European Medicines Agency

EP Evoked Potentials

FLAIR Fluid Attenuated Inversion Recovery

FDA Food and Drug Administration

GA Glatiramer Acetate

GBS Guillain Barre Syndrome

HSV Herpss Simplex Virus

HIV Human Immunodeficiency Virus

HTLV-1 Human T-cell Lymphotropic Virus1

IIDDs Idiopathic Inflammatory Demyelinating Diseases

Ig Immunoglobulin

ICU Intensive Care Unit

IFN-B Interferon Beta

IPMSSG International Pediatric Multiple Sclerosis Study Group

IM Intramuscular

IVIg Intravenous Immunoglobulin

LOS Lipo-Oligosaccharides

LPS Lipo-polysaccharides

LETM Longitudinally Extensive Transverse Myelitis

MRI Magnetic Resonance Imaging

MMR Measles, Mumps and Rubella

MFS Miller Fisher Syndrome

MIU Million International Units

MTX Mitoxantrone Hydrochloride

MCTD Mixed Connective Tissue Disease

MNCV Motor Nerve Conduction Velocity

MS Multiple Sclerosis

MAG Myelin Associated Glycoprotein

MBP Myelin Basic Protein

MOG Myelin Oligodendrocyte Glycoprotein

NCV Nerve Conduction Velocity

NO Neuromyelitis Optica

OCB Oligoclonal Bands

OPCs Oligodendrocyte Progenitor Cells

OLG Oligodendrocytes

ON Optic Neuritis

P2 P2 protien

PMP22 Peripheral Myelin Protein 22

PNS Peripheral Nervous System

PCR Polymerase Chain Reaction

PPMS Primary Progressive Multiple Sclerosis

PRMS Progressive Relapsing Multiple Sclerosis

P0 Protein Zero

PLP Proteolipid Protein

RIS Radiologically Isolated Syndrome

PRMS Relapsing Remitting Multiple Sclerosis

MDS Schilder Myelinoclastic Diffuse Sclerosis

SPMS Secondary Progressive Multiple Sclerosis

SNCV Sensory Nerve Conduction Velocity

SMEI Sever Myoclonic Epilepsy in Infancy

SS Sjogren's Syndrome

SMA Spinal Muscular Atrophy

SC SubCutenous

SAGs SuperAntigens

SLE Systemic Lupus Erythromatosis

TPE Therapeutic Plasma Exchange

TMS Transcranial Magnetic Stimulation

TM Transverse Myelitis

US United States

VAERS Vaccine Adverse Event Reporting System

VZV Varicella Zoster Virus

WBCs White Blood Cells

List of Figures

Figure	Title	Page
Fig 1	Myelinating glial cell, myelin structure, and	9
	composition in the peripheral nervous system	
	(PNS) and in the CNS.	
Fig2	The CNS myelin bilayer.	13
Fig3	Diagrammatic representation of compact CNS	13
	and PNS myelin.	
Fig4	Mechanisms for spread of the nerve impulse.	14
Fig5	Classification of acquired inflammatory CNS	22
	demyelination in children.	
Fig6	Risk factors for MS.	27
Fig7	Working hypothesis as to the cause of MS.	32
Fig8	Pathogenesis of MS.	34
Fig9	MRI of MS in children.	45
Fig10	T2 Weighted –FLAIR image representing	46
	supratentorial lesions in pediatric MS.	
Fig11	MRI in patient with MS.	47
Fig12	Schilder's disease: flair parasagittal magnetic	54
	resonance imaging (MRI).	
Fig13	Schilder's disease. Serial brain MR images in a	55
	patient with SD who later developed clinically	
	definite MS.	
Fig14	Baló's concentric sclerosis.	56
Fig15	Acute disseminated encephalomyelitis,	69
	Perivenular mononuclear infiltration and	
	microglial reaction.	
Fig16	Histology demonstrating patchy demyelination in	69

	established Acute disseminated	
	encephalomyelitis.	
Fig17	Flow chart/decision tree for the diagnosis of	70
	acute disseminated enceph-alomyelitis	
	(ADEM), recurrent ADEM, multiphasic	
	ADEM, and pediatric multiple sclerosis	
Fig18	MRI of 6 year old boy with Acute disseminated	78
	encephalomyelitis.	
Fig19	MRI brain in Acute disseminated	78
	encephalomyelitis 1.	
Fig20	MRI brain in Acute disseminated	79
	encephalomyelitis 2.	
Fig21	MRI brain in Acute disseminated	79
	encephalomyelitis in 8 month old boy.	
Fig22	Deep gray matter lesions in Acute disseminated	80
	encephalomyelitis.	
Fig23	Spinal cord involvement in acute disseminated	80
	encephalomyelitis.	
Fig24	MRI spine in acute transverse myelitis.	97
Fig25	MRI was performed in the acute stage of	98
	transverse myelitis.	
Fig26	Proposed pathogenesis of NMO.	110
Fig27	Sagittal T2-weighted cervical spinal cord MRI	117
	from a patient with acute myelitis and	
	neuromyelitis optica.	
Fig28	MRI scans of the spinal cord in neuromyelitis	118
	optica.	
Fig29	Atrophy in individuals with pediatric onset	119
	neuromyelitis optica.	

Fig30	A Coronal T1-weighted fat-saturated	120
	postgadolinium imaging performed through the	
	orbits in neuromyelitis optica patient.	
Fig 31	Locations of GBS peripheral nerve attack in	134
	peripheral nervous system.	
Fig 32	Immunobiology of GBS.	139
Fig 33	Approach to the diagnosis of acute	155
	demyelination in children	
Fig 34	An approach to CNS demyelination in children	156
	based on consensus definitions by the pediatric	
	MS study group1 (Srinivasan et al., 2010).	
Fig 35	Steps in MS differential diagnosis	157
Fig36	Differential diagnosis upon presentation with	158
	demyelinating optic neuritis	
Fig37	differential diagnosis upon presentation with	159
	demyelinating spinal cord syndrome	
Fig 38	differential diagnosis upon presentation with	160
	demyelinating brain stem syndrome	
Fig 39	Treatment of acute CNS demyelinating	161
	disorders in children	

List of Tables

Table	Title	Page
Table 1	Disorders that cause CNS demyelinaation.	19 -20
Table2	Monophasic CNS inflammatory demyelinating	23 -24
	disease definitions.	
Table 3	Relapsing CNS inflammatory demyelinating disease.	24
Table 4	Symptoms and signs relevant to CNS inflammatory	25
	demyelination.	
Table 5	Symptoms and signs of multiple sclerosis by site.	36-37
Table 6	Differentiating clinical, laboratory and MRI features	50
	of ADEM and MS at initial presentation.	
Table 7	Different definitions of acute demyelinating	63-64
	encephalomyelitis (ADEM) used in recently	
	published series of paediatric and adult patients.	
Table 8	Diagnostic categories to consider and exclude in	82-83
	children with DEM.	
Table 9	Diagnostic criteria for idiopathic ATM.	95
Table 10	Causes of transverse myelopathy.	101
Table 11	Wingerchuk et al., 1999 diagnostic criteria for	112
	neuromyelitis optica.	
Table12	Wingerchuk et al., 2006 revised diagnostic criteria	112
	for neuromyelitis optica.	
Table 13	Classification of the Idiopathic Inflammatory	124-
	Neuropathies.	125
Table 14	Mimics of Guillain-Barre' Syndrome and Some of	147-
	Their Distinguishing Characteristics.	148
Table15	Treatment of inflammatory neuropathies	162

List of Contents

	Page
1 - List of abbreviation	
2- List of figures	
3- List of tables	
4- Introduction	1
5- Aim of the work	7
6- Literature of Review	
- Chapter 1	
Basic Myelin Sturcture	
- Chapter 2:	
Acute Central Nervous System Demyelinating Disorders in	21
childern	
- Chapter 3:	
Acute Peripheral Nervous System Demyelinating Disorders in	124
Children	
7- Discussion	154
8- Summary	164
9- Conclusion & Recommendation	
11- References	
12- Arabic Summary	

Introduction

Introduction

Normal functioning of the nervous system involves the transmission, processing and integration of information as nervous impulses. Impulse transmission along axons is greatly facilitated by the presence of myelin, the compact multilamellar extension of the plasma membrane of specialized glial cells that spirals around larger axons. In the central nervous system (CNS), oligodendroglial cells are responsible for the synthesis and maintenance of myelin, whereas schwann cells subserve this role in the peripheral nervous system (PNS) (Harry and Toews, 1998).

Demyelinating diseases of nervous system are characterized by lesions that are associated with loss of myelin with relative sparing of axons. Central nervous system myelin and peripheral nervous system myelin are antigenically different .Therefore, some demyelinating disorders attack the central nervous system (the prototype is multiple sclerosis), while others affect the peripheral nervous system (the prototype being Guillain-Barre syndrome) (Reeves and Swenson , 2008).

Demyelinating diseases of the CNS including acute disseminated encephalomyelitis (ADEM), acute hemorrhagic leukoencephalitis, devic's disease, multiple sclerosis (MS), transverse myelitis (TM), and clinically isolated syndromes such as optic neuritis. Demyelination of the peripheral nervous system can present acutely as the heterogeneous entity known as Guillian-Barre syndrome (GBS) (Adamovic *et al.*, 2008).

There are multiple effectors mechanisms that operate to produce acute demyelination .Cytokines and tumor necrosis factor alpha (TNF- α) are pivotal in orchestrating immune and inflammatory cell-cell

interactions and represent potentially noxious molecules to the myelin sheath, Schwann cells, and/or oligodendrocytes. Arachidonic acid metabolites are intimately involved in the inflammatory process by enhancing vascular permeability, providing chemotactic signals and modulating inflammatory cell activities. Reactive oxygen species can damage myelin by lipid peroxidation and may be cytotoxic to myelin-producing cells. Activation of complement yields a number of inflammatory mediators and results in the assembly of the membrane attack complex that inserts into the myelin sheath-creating pores. Activated complement may contribute both to functional disturbance of neural impulse propagation, and to full-blown demyelination. Proteases, abundantly present at inflammatory foci, can degrade myelin. Vasoactive amines may play an important role in breaching of the blood-brain/bloodnerve barrier (Hartung et al., 2002).

Demyelination is a common cause of neurological disability in young adults. Its clinical features and presentations may be highly variable, making it a diagnostic challenge (Gupta et al., 2009).

Symptoms differ from patient to patient, and have different presentations. In CNS demyelination, manifestations can be with signs and symptoms caused by single lesion (monofocal clinically isolated syndrome) or with polyfocal features such as multiple sclerosis (**Banwell et al., 2007**). Two main clinical expressions of acute demyelination of the CNS, in children, can be observed. The first is more frequently observed in young patients under 10 years old age, and the symptoms are often imprecisely described as 'acute encephalitis' (**Tardieu and Mikaeloff, 2004**). The onset is acute with headache, nausea, vomiting, fever, seizures, altered state of consciousness, motor-sensory hemisyndromes and cerebellar and brainstem dysfunction (**Gadoth, 2003**). The second

mode of expression is more frequent in teenagers and is reminiscent of observations after acute demyelination in young adults. It consists of isolated or combined symptoms, such as optic neuritis, discrete hemiparesis, brain stem-related symptoms and sensory disturbances, usually without any changes in mental state, while the latter mode is more suggestive of MS, both lead to a differential diagnosis requiring Magnetic Resonance Imaging (MRI) and biological tests to confirm the final diagnosis (Tardieu and Mikaeloff, 2004).

In acute demyelination of PNS such as in GBS, there is dramatic acute demyelinating neuropathy with rapid onset (Reeves and Swenson, 2008).

The clinical manifestations in children are often anteceded within 2 to 4 weeks by recent illness. The hallmark of GBS is an ascending weakness. Older, more verbal children and adults will present with complaints of weakness and unsteadiness. The weakness typically starts in the lower extremities and ascends into the upper extremities. This progression may extend from hours to days to weeks. In younger, less verbal children, the symptom of gait unsteadiness and ataxia is a pertinent clinical feature. Although weakness is the most common clinical feature, the most frequent initial presenting complaint in children is pain. Pain complaints consist of back pain, leg pain, and headaches and can sometimes be severe in nature (Delanoe et al., 1998).

Sensory symptoms and <u>parasthesia</u> have been noted in 18% to 54% of children (Sladky, 2004). It should be noted that sensory symptoms are often difficult to elicit from younger, less verbal children, these sensory symptoms occur most commonly in the distal extremities (Bradshaw and Jones, 1992). Ataxia has been reported in almost half of the children

with GBS. Cranial neuropathies are also a common finding, seen in 15% to 50% of these children (Hsieh, 2009).

Acute demyelination in children can be life threatening because of profound encephalopathy, respiratory depression, and tetraplegia (Banwell *et al.*, 2007).

Morbidity and eventual mortality in patients with the GBS are associated with cardiopulmonary instability, including blood pressure fluctuations, potentially fatal tachyarrhythmia, bradyarrhythmia, and myocarditis (Mukerji *et al.*, 2009). Fatigue, spasticity, ataxia, pain and bowel, bladder and sexual dysfunction are also detected as complications in cases of MS (Kesselring, 2003).

The diagnosis of demyelinating disorders carries important therapeutic and prognostic implications. In most cases the diagnosis is made clinically with involvement of the histopathologist and clinicopathological correlation (love, 2006).

Detection of demyelinating disorders increased because of enhanced awareness and increased systematic neuroimaging and electromyography/nerve conduction studies. Laboratory data include evidence of albuminocytologic dissociation or oligoclonal bands in cerebrospinal fluid (Adamovic et al., 2008).

The Cerebro-Spinal Fluid (CSF) profile for pediatric MS cases appears to be similar to that found in adults, with the exception of slightly higher incidence of pleocytosis in children. Pohl et al., 2004 have reported a very high sensitivity for detecting oligoclonal bands in known pediatric MS cases between ages 6 and 16 years. Other studies have suggested that a much lower rate of oligoclonal bands is found in very young patients (Chabas et al., 2006). CSF analysis may confirm