Systemic Manifestations of Traumatic Brain Injury

Essay Submitted in Partial Fulfillment of the Master's Degree

in Intensive Care Medicine

By

Mohamed Mohamed Abdelatty Shararibo (M.B., B.Ch.)
Faculty of medicine – Mansoura University

Under Supervision of:

Prof. Dr. Hesham Mohammed El-Azzazi

Professor of Anesthesiology, Intensive Care and pain management Faculty of Medicine - Ain Shams University

Dr. Ahmad Kamal Mohammed Ali

Lecturer of Anesthesiology and Intensive Care Faculty of Medicine - Ain Shams University

2017

Thanks first and last to **ALLAH** as we owe Him for His great care, support and guidance in every step in our life.

I would like to express my deep gratefulness to Prof. Dr. Prof. Dr. Hesham Mohammed El-Azzazi,

Professor of anesthesia, intensive care and pain management Faculty of Medicine - Ain Shams University, for his concern, his guidance and continuous encouragement. I consider myself very fortunate to work under his supervision.

I am grateful to Dr. Ahmad Kamal Mohamed Ali,

lecturer of anesthesia and intensive care Faculty of Medicine - Ain Shams University, for his generous and continuous help and valuable suggestions as well as his desire to achieve perfection. His great help was very impressive and his meticulous reading and enormous assistance should be appreciated.

Dr.Mohamed Mohamed Abdelatty Shararibo

CONTENTS

Title	page
List of Abbreviations	i.
List of Figures	ii.
List of Tables	iii.
Introduction	1
Chapter (1)	7
Pathophysiology of systemic manifestations of	
traumatic brain injury	
Chapter (2)	
Prevention and management of systemic	40
manifestations of traumatic brain injury	
Summary	87
References	89
Arabic summary	

LIST OF ABBREVIATIONS

A10	Clot amplitude at 10 minutes after the
	beginning of clot formation
ACTH	Adrenocorticotropic hormone
ADH	Antidiuretic hormone
ALI	Acute lung injury
ARDS	Acute respiratory distress syndrome
ASPEN	American Society for Parenteral and Enteral
	Nutrition
ANS	Autonomic nervous system
APTT	Activated partial thromboplastin time
BBB	Blood brain barrier
BD	Brain damage
BG	Blood glucose
BTF	Brain trauma foundation
CARS	Compensatory anti-inflammatory response
	syndrome
CBF	Cerebral blood flow
CK	Creatinine kinase
COPD	Chronic obstructive pulmonary disease
CO	Cardiac output
CPIS	Clinical pulmonary infection score
CPP	Cerebral perfusion pressure
CSF	Cerebrospinal fluid
CSW	Cerebral salt wasting
CT	Clotting time
CVP	Central venous pressure
DAMPs	Damage associated molecular patterns
DI	Diabetes insipidus
EXTEM	Extrinsically activated thromboelastography
	test
EVD	Extra ventricular device

EGII	F.11' . 1 1 1
FSH	Follicular stimulating hormone
FibTEM	Fibrin based thromboelastometric test
GCS	Glasgow-coma scale
GH	Growth hormone
GFAP	Glial fibrillary acidic protein
GOS	Glasgow-outcome scale
HBOT	Hyperbaric oxygen therapy
НО	Heterotopic ossification
HR	Heart rate
HRT	Hormonal replacement therapy
HTS	Hypertonic Saline
HPA	Hypothalamus pituitary-adrenal
IL	Interleukin
ICP	Increased intracranial pressure
INR	International normalized ratio
LMWH	Low molecular weight heparin
LV	Left ventricle
MCF	Maximum clot firmness
MDR	Multi-drug resistant
MIH	Mild induced hypothermia
NPE	Neurogenic pulmonary edema
NSE	Neuron specific enolase
NSM	Neurogenic stunned myocardium
ODS	Osmotic demylination syndrome
PAID	Paroxysmal autonomic instability and
	dystonia
PTH	Phenytoin
PTHP	Post-traumatic hypopituitarism
PT	Prothrombin time
PRIS	Propofol infusion syndrome
ROS	Reactive oxygen species
SAH	Subarachnoid hemorrhage
ScvO ₂	Central venous saturation
SIADH	Syndrome of Inappropriate Antidiuretic
	Hormone

SIRS	Systemic inflammatory response syndrome
SCCM	Society of critical care medicine
TBI	Traumatic brain injury
TEE	Trans-esophageal echo
TF	Tissue factor
TTE	Trans-Thoracic echo
TSH	Thyroid stimulating hormone
VAE	Ventilator associated events
VAP	Ventilator associated pneumonia
VILI	Ventilator induced lung injury
VPA	Valporate

Table of figures

Figure	Content of figure	Page
no		no
1	Systemic manifestations of traumatic	11
	brain injury and their effect on outcome	
2	Mechanisms of traumatic brain injury	22
	induced pulmonary dysfunction	
3	Possible mechanism and the interactions	24
	between brain and systemic immunity	
	after traumatic brain injury (TBI)	
4	Primary mechanical injury and	28
	secondary ischemic/reperfusion injury	
	induces a neuro-inflammatory reaction	
5	The hypothalamus secretes hormones,	31
	which mediate production of anterior	
	pituitary hormones	
6	Current understanding of the	32
	mechanisms underlying the	
	coagulopathy of TBI	
7	Neuroprotective properties of therapeutic	46
	hypothermia	
8	Algorithm indication of ICP monitoring	52
	and management	
9	X-ray of Neurogenic pulmonary edema	64
10	Oxygen tension and carbon dioxide	68
	effects on Cerebral Blood flow	
11	Algorithm ventilator-associated events	70
	surveillance definition	
12	Laboratory tests currently available to	74
	assess hemostatic disorders after TBI	
13	Treatment algorithm of hyponatremia	80

List of tables

Table	Table content	page
no		
1	Table of Glasgow coma scale	9
2	Incidence of systemic organ	10
	dysfunction and failure in patients with	
	severe head injury	
3	Sympathetic (adrenergic) receptor	13
	interactions	
4	Risk factors for VAP	19
5	drugs used in management of	60
	autonomic dysfunction	
6	cardiac manifestations occur with brain	62
	injury	
7	Criteria for differentiation between	63
	NSM and MI	
8	Management of Tako-Tsubo	63
	cardiomyopath	
9	D.D. of neurogenic pulmonary edema	75
10	management of NPE	65
11	Initial empiric antibiotic treatment	72
	based on risk factors for multidrug-	
	resistant pathogens causing VAP	
12	Consensus panel recommendations	75
	regarding viscoelastic thresholds for	
	triggering the initiation of specific	
	treatments including fibrinogen,	
	platelet, plasma, and prothrombin	
	complex concentrates in bleeding	
	trauma patients	
13	screening tests for PTHP	76
14	Overview of hormonal abnormalities	78
	associated with TBI	
15	comparison between SIADH and CSW	79

16	Nosocomial infections in the neuro-	83
	intensive care unit	

Abstract:

Traumatic brain injury (TBI) affects functioning of various organ systems in the absence of concomitant nonneurologic organ injury or systemic infection. The systemic manifestations of TBI can be mild or severe and can present in the acute phase or during the recovery phase. Non-neurologic organ dysfunction can manifest following mild TBI or severe TBI. The pathophysiology of systemic manifestations following TBI is multifactorial and involves an effect on the autonomic nervous system, involvement of the hypothalamic-pituitary axis, release of inflammatory mediators, and treatment modalities used for dysfunction, Endocrine electrolyte imbalance, respiratory manifestations are common following TBI. The of influence TBI on systemic immune coagulation cascade, cardiovascular system, gastrointestinal system, and other systems is becoming more evident through animal studies and clinical trials. Systemic manifestations can independently act as risk factors for mortality and morbidity following TBI.

Key words: Endocrine dysfunction; autonomic dysfunction; coagulopathy; immune response; neurogenic pulmonary edema

Introduction

Introduction

The pathophysiology of traumatic brain injury (TBI) involves the initial primary brain injury that occurs at the time of accident and the secondary brain injury that follows which results in increased intracranial pressure (ICP) and decreased cerebral perfusion. Secondary brain injury is due to the several biochemical cascades that occur in brain after TBI. Systemic insults such as hypoxia, hypotension, fever, and anemia can potentiate the process of secondary brain injury. The current evidence-based management of TBI mainly includes intensive monitoring of physiological parameters like ICP and cerebral perfusion pressure (CPP), anticipation of secondary insults, their early recognition (medical and/or and adequate management surgical). However, there is an increasing awareness that apart from the cerebral manifestations there are several systemic manifestations of TBI which can independent prognostic factors (Zygun et al., 2005).

The systemic manifestations occur in the absence of any coexisting specific organ injury or systemic infection. The nature and severity of the systemic manifestations of TBI mainly depend on the severity of the brain injury. Mild TBI causes systemic manifestations such as fatigue and dizziness whereas severe TBI can adversely affect the functioning of multiple organ systems. Following severe TBI, endocrine dysfunction and electrolyte imbalances are common while renal and hepatic manifestations are unusual. These systemic manifestations can occur either in the acute phase following severe TBI or/and during the chronic phase of rehabilitation. The manifestations in any particular organ system can vary from mild organ dysfunction to organ failure. Zygun et al. reported organ dysfunction in 89% of patients, and organ failure in 35% of patients in their observational study of 209 patients with severe TBI (Zygun et al., 2005).

The systemic manifestations can result in both increased mortality (with one organ system involvement mortality is 40%, with two organ systems 47%, while with no organ system dysfunction it is 26%) and adverse outcomes following severe TBI (*Lim and Smith*, 2007).

Endocrine dysfunction is common and the symptoms of these hormonal abnormalities overlap with the chronic symptoms that persist after TBI, especially fatigue, weakness, memory and attention problems. Current recommendations for screening of TBI patients include acute assessment for cortisol and thyroid deficiency and

treatment is indicated for documented deficiency of these hormones. At 3–6 months, the additional following screening is recommended: morning cortisol level, insulinlike growth factor, thyroid stimulating hormone, free thyroxine, luteininzing hormone, follicle stimulating hormone, estradiol (females), and testosterone(males) (*Ghigo et al.*, 2005).

Zygun et al., (2005) reported pulmonary complications in 80% of patients with severe TBI. In patients with severe brain injury (GCS <8), acute lung injury (ALI) is seen in 20% of patients.

Following TBI there is a surge in catecholamines in the blood. This sympathetic hyperactivity results in tachycardia and systemic hypertension which increases the work load of heart. As catecholamines can also cause constriction of coronary vessels, ischemia of the myocardium especially in the subendocardial regions may result. This myocardial ischemia is responsible for the several ECG changes that are seen after TBI. Prolonged QTc on ECG is more common after traumatic SAH and can result in cardiac arrhythmias (*Collier et al.*, 2004).

Although coagulation abnormalities after TBI is common and contribute to devastating complications of delayed intracranial hemorrhage, the pathophysiology of coagulation abnormalities after TBI is not well understood and may involve tissue factor release from injured tissue, fibrinolysis, thrombocytopenia, and activated protein C and other cytokines (*Laroche et al.*, 2012).