INFRAINGUINAL ENDOVASCULAR THERAPY AS THE PRIMARY APPROACH IN PATIENTS WITH CRITICAL LIMB ISCHEMIA COMPARED WITH SURGICAL APPROACH

Thesis

Submitted for partial fulfillment of M.D degree in vascular surgery

By

Doaa Meselhy Afify

M.B.B.Ch., M.Sc. general surgery

Supervised by

Prof. Dr. Ahmed Mahmoud SaadEldin

Professor of vascular surgery
Faculty of medicine-Ain Shams University

Prof. Dr. Mohamed Shawky Elwaraky

Professor of Interventional radiology
National Liver Institute
Menoufyia University

Dr. Abdulrahman Mohamed Ahmed

Lecturer of vascular surgery
Faculty of medicine-Ain Shams University

2017

سورة طه (آية ١١٤)

ABSTRACT

Critical limb ischemia (CLI) is characterized by multi-level disease, high burden of comorbidity and limited life span. The care of patients with CLI is not straightforward because many of them have significant co-morbidities including renal disease, advanced age, Hypertension, diabetis mellitus and Hyperlipidemia. Percutaneous balloon angioplasty improves outcomes in CLI and has increasingly become the first-line treatment for diabetic patients with CLI .Compared to surgical bypass grafting, the endovascular treatment have the advantages of being minimally invasive, associated with less morbidity and mortality, lower cost, shorter hospital stay, can be repeated and preserve the saphenous vein

<u>Aim of the study:</u> This study was undertaken in an effort to evaluate the efficacy of angioplasty as a primary choice for the management of infrainguinal arterial diseases compared with surgical approach in aretrospective manner.

Patients and methods: This is a prospective study conducted on patients with chronic atherosclerotic critical lower limb ischemia presenting to us along the period of 3/2015 to 11/2016. Patients presenting with non-salvagable limbs requiring primary major amputation, acute thrombosis, embolic occlusions, aneurysms ,trauma, autoimmune, artritis or connective tissue disorders (e.g. Behcet, SLE), entrapment syndromes, were excluded from this study. Patients were investigated routinely by duplex and selectively by CTA. All endovascular procedures were done in our angiosuite under local

anaesthesia and all open surgery were done in the operating theater under epidural or general anaesthesia

Result: This a study of 100 cases of CLI the mean age was 61 male/female ratio 2:1. Patients with Rutherford IV, V, and VI were 24, 17 and 33 respectively. Level of occlusions included, SFA, popliteal and crural in 47,19,34 respectively. Multilevel diseases were encountered in 85 patients. 50 patients were treated by endovascular and 50 patients needed surgery. Tackling of lesions by subintimal and intraluminal were in 3 and 97 respectively. Technical success was in endovascular and open is 93%, 85% respectively. On 12 mon6ths follow up 1ry patency, 2ry patency, limb salvage in 77.8%, 84.7% and 90.7% respectively. The overall mortality was 3%. Multiple lesions, length of lesions > 10 cm, subintimal passage lowered the technical success, patency rate, limb salvage.

Acknowledgment

All Thanks go to *Allah* the most Gracious and Merciful, whose light guided me throughout my whole life. I would like to deeply thank my professors who aided me in this work and were the best example for demonstrating how the relationship between a professor and his student should be. Without them this work wouldn't have seen the light. They were always directing me and guiding me to the right thing. All the appreciation and gratitude go to them.

I would like to thank *Prof. Dr. Ahmed Mahmoud Saad El Din* for his continuous support and his fatherly sincere advices that helped me not only finishing this work, but also helped me greatly in my scientific life and work(Many Many thanks my professor).

I would like to thank *Prof. DR .Mohamed Shawky El waraky* . professor of interventional radiology, National liver institute . Menoufyia university for his constant support and help to finish this work.

Also I would like to thank. *Dr. Abdulrahman Mohamed Ahmed Salem* for without his continuous scientific guiding and generous data and information he was giving I wouldn't have been able to complete this work.

Thanks to *My Family* who were always by my side and supporting my back pushing me forwards to success.... Thanks a lot..

Contents

List of Subjects	Page
- Introduction and Aim of the work	1-5
- Review of Literature	6-156
- Anatomy of Infra-inguinal arterial system	6-35
- Pathophysiology of critical lower limb ischemia	36-44
- Diagnosis of critical lower limb ischemia	45-68
- Management of critical lower limb ischemia due to Infra- inguinal arterial disease.	69-155
- Patients and Methods	156-159
- Results	160-193
- Discussion	194-218
- Summary	219-221
- Conclusion	222
- References	223-244
- Arabic Summary	1-3

List of Tables

	Tables	Page
Table(1):	Classification of peripheral arterial disease: Fontaine's stage and Rutherford's categories	44
Table (2):	Documentation of the wound characterisctics	47
Table (3):	Comparison between DSA, MRA, and CTA	65
Table (4):	Advantages and disadvantages of endovascular versus surgical revascularization in treatment of patients with critical lower limb ischemia	82
Table(5):	Trans-Atlantic Inter-society consensus classification of femoropopliteal arterial diseases	90
Table(6):	Tans-Atlantic Inter-society consensus classification of infrapopliteal arterial lesions	122
Table (7):	Associated co-morbidity of critical lower limb ischemia.	196
Table (8):	Clinical presentation in various studies.	199
Table (9):	Comparison with different papers in patency; LSR, mortality and complications.	214

List of Figures

	Figure	Page
Fig. (1):	Normal right arterial tree	7
Fig. (2):	 (A) collateral circulation of the left lower extremity secondary to occlusion of the major arterial segments. (B) Arteriogram showing complete occlusion of the left common iliac artery 	9-10
Fig. (3):	Diagram showing femoral artery and its branches	12
Fig. (4):	Diagram showing popliteal artery and it's branches	20
Fig. (5):	Circumpatellar anastomosis	22
Fig. (6):	Diagram showing popliteal, posterior tibial and peroneal arteries	25
Fig. (7):	Diagram showing superficial and Deep planter arteries	30
Fig. (8):	Angiosomes of the foot and leg	33
Fig. (9):	Angiosomes of the foot arising from the peroneal artery (calcaneal branch, anterior perforating branch)	33
Fig.(10):	Angiosomes of the foot from the anterior tibial artery and dorsalispedis artery	34
Fig.(11):	Angiosomes of the foot arising from the posterior tibial artery (calcaneal branch, medial planter branch and lateral planter branch)	35
Fig. (12):	Method for measurement of the ankle-brachial index (ABI)	52
Fig. (13):	Schematic of the lower limb arteries for recording of arterial duplex map findings	53
Fig. (14):	MDCT angiogram showing coronal curved planar reformatted images of the abdominal aorta and right iliac artery	60
Fig.(15):	MR angiography	62
Fig.(16):	Angiography (A) atherosclerosis with occlusive disease limited to the infra-renal aorta and common iliac arteries. (B)Large collateral vessels confirm hemodynamic significance of left common iliac stenosis	64

Fig.(17):	Carbon dioxide digital subtraction arteriogram.	67
Fig.(18):	Algorithm for treatment of the patient with critical limb ischemia.	59
Fig. (19):	Femeropopliteal TASC II classification	91
Fig.(20):	(A) Completion arteriography identifies a significant distal anastomotic defect(B)The anastomosis was re-explored and the defect was corrected	96
Fig. (21):	(A) Routine completion arteriography identifies an unsuspected site of graft compression in the tunnel.(B)The site was explored, the compression was released	96
Fig. (22):	Overview of new technologies of lower extremity revascularization	101
Fig. (23):	Routine completion arteriography identifies an unsuspected site of graft compression in the tunnel	103
Fig. (24):	Lateral foot view obtained via distal selective superficial femoral arterial injection identifies excellent collaterals from the distal peroneal artery to both the dorsal pedal and posterior tibial circulations	104
Fig. (25):	Posterior exposures of popliteal and crural vessels	105
Fig. (26).	 A) completion arteriography identifies a significant distal anastomotic defect, despite a good graft pulse and distal continuous wave Doppler signal. (B)The anastomaosis was re-explored, the defect was corrected. 	106
Fig. (27):	Covered stent and SUPERA stent	108
Fig. (28):	(A) High-grade stenosis of midfemoral-posterior tibial saphenous bypass graft.(B)With the EPD Filter Wire distal to the lesions, angioplasty with a 3-mm balloon catheter is	116

	performed.	
	(C)Immediately after angioplasty, there is good flow	
	through the lesion.	
Fig. (29):	Treatment of multilevel disease with plaque excision	132
Fig. (30):	Retrograde access in posterior tibial artery with placement of 4F sheath.	134
Fig. (31):	Case illustrating the technique used to achieve revascularization of occluded posterior tibial artery using retrograde tibial artery access.	135
Fig. (32):	Retrograde recanalization of posterior tibial artery occlusion using collateral connection between the distal peroneal artery and posterior tibial artery	136
Fig. (33):	Digital substraction angiogram of the right leg shows a lesion: tibio-peroneal trunk obstruction (arrows).	137
Fig. (34):	(A) (B) advantages of self expanding stents and balloon expandable stents .	141
Fig. (35):	Diabetic foot ulcer treatment algorithm	155
Fig. (36):	Different presentation (minor and major tissue loss)	165
Fig. (37):	S.F.A block and infrapopliteal disease	181
Fig. (38):	Total S.F.A occlusion .	181
Fig. (39):	Multilevel lesions	182
Fig. (40):	Runoff status (isolated, two, and one runoff)	183
Fig. (41):	Access for infra-inguinal disease (contra-lateral, ipsilateral and popliteal access)	184
Fig. (42):	Subintimal passage of S.F.A lesion with re-entry and insertion of stent	185
Fig. (43):	S.F.A occlusion with dilatation and dissection that was treated by stent	186
Fig. (44):	Dissection after dilatation was tried but failed so stent inserted	187
Fig. (45):	Dissection after dilatation was tried but failed so stent inserted.	188
Fig. (46):	Anterior tibial artery dilatation.	189
Fig. (47):	Peroneal artery angioplasty.	190
Fig. (48):	Posterior tibial artery angioplasty.	191
	<u> </u>	

List of Figures

Fig. (49):	S.F.A stent occluded that was treated by another stent (Take care of not cover the profunda femoris artery).	192
Fig. (50):	Ipsilateral retrograde femoral artery and contra-lateral crossover for flush S.F.A occlusion.	193

List of Abbreviations

CLI :Critical limb ischemia

PAD : Peripheral arterial disease

ABI : Ankle – brachial index

TASC: Trans – Atlantic Inter society consensus

MI : Myocardial - infraction

CDI : Color duplex Imaging

DPA : Dorsalispedis artery

PTA : posterior tibial artery

CTA : computed tomographic angiography

MRA : Magnetic resonance angiography

CT : Computed tomography

CO2 : Carbon dioxide

BASIL: By pass versus angioplasty in severe ischemia of the leg

ET : Endovascular treatment

SAFARI : Subintimal arterial flossing with artegrade retrograde intervention

SFA : Superficial femoral artery

RCTS: Randomized controlled trials

FDA : Food and drug administration

SIA : Subintimal angioplasty

CFA :Common femoral artery

RSFAE : Remote superficial femoral artery endarterectomy

CTOs : Chronic total occlusions

CDT : Catheter directed thrombolysis

EPD : embolic protection devices

PTFE : Polytetrafluro – Ethylene

BTK : Below the knee

SA : Subintimal angioplasty

CLL : Critical lower limb

AMS : Absorbable magnesium stents

DES : Drug eluting stents

BMS : Bare metal stents

SES : Sirolimus eluting stents

PVD : Peripheral vascular disease

NO : Nitrous oxide

EV : Endovascular treatment

CIN :Contrast induced nephropathy

CN : Contrast nephropathy

LOCM: Low osmolarity contrast media

HOCM: High osmolarity contrast media

IOCM :Intermediate osmolarity contrast media

ASA : American society of anastheologists

SBG : Surgical bypass grafting

MRSA : Methicillin –resistance staphylococcus aureus

PAOD : Peripheral Arterial occlusive disease

DFA : Deep Femoral artery

HBD : Heparin bonded -Dacron

HUV : Human umbilical vein

GSV : Great saphenous vein

CDI : Color duplex imaging

DSA :Digital subtraction angiography.

CBC : Complete blood count

LEGS: Lower extremity grading score.

Introduction

Critical limb ischemia (CLI), defined as more than two weeks of rest pain, ulcers, or tissue loss attributed to arterial occlusive disease, and is associated with great loss of both limb and life (*Slovu*, 2008).

Critical limb ischaemia (CLI) is a disease process with tremendous cardiovascular burden. The care of patients with CLI is not straightforward because many of them have significant co-morbidities including renal disease and advanced age that further contribute to the overall morbidity, mortality, dependency and poor life satisfaction. The decision to perform a revascularisation procedure (whether by surgical bypass or endovascular treatment) versus amputation or treat with medical therapy alone remains a challenge. (*Cieri et al, 2010*)

The primary risk factors for CLI include diabetes, hypertension, hyperlipidemia and tobacco use. Patients with diabetes are five times more likely to develop critical limb ischaemia than non-diabetics and up to 30% of patients with critical limb ischaemia are diabetic. (*Pedrini*, 2003)

The prognosis of occlusive arterial disease is considerably worse in diabetics than in non-diabetics. The proportion of patients suitable for intervention is lower, failure after revascularisation is often caused by sepsis, and perioperative mortality is increased. This poor outcome is explained by the distal location of the arterial lesions, and the frequent association with diabetic microangiopathy, nephropathy and cardiomyopathy. (Cardon J M et al, 2008)