COMPARATIVE ASSESSMENT OF AIR DISTRIBUTION SYSTEMS FOR IMPROVING INDOOR THERMAL COMFORT IN OFFICE SPACES

By

Eng. Ahmed Mahmoud Mohamed Ahmed Abouzaid

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
DOCTOR of PHILOSOPHY

In
MECHANICAL POWER ENGINEERING

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

COMPARATIVE ASSESSMENT OF AIR DISTRIBUTION SYSTEMS FOR IMPROVING INDOOR THERMAL COMFORT IN OFFICE SPACES

By

Eng. Ahmed Mahmoud Mohamed Ahmed Abouzaid

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
DOCTOR of PHILOSOPHY

In MECHANICAL POWER ENGINEERING

Under Supervision of

Prof. Dr. Essam E. Khalil

Dr. Esmail M. Bialy

Professor, Mechanical Power Engineering
Department Faculty of
Engineering, Cairo University

Lecturer, Mechanical Power Engineering
Department Faculty of
Engineering, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2015

COMPARATIVE ASSESSMENT OF AIR DISTRIBUTION SYSTEMS FOR IMPROVING INDOOR THERMAL COMFORT IN OFFICE SPACES

By

Eng. Ahmed Mahmoud Mohamed Ahmed Abouzaid

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
DOCTOR of PHILOSOPHY

In MECHANICAL POWER ENGINEERING

Approved by examining committee

Prof. Dr. Essam E. Khalil

Main Thesis Advisor

Mechanical Power Department - Faculty of Engineering - Cairo University

Prof. Dr. Samy M. Morcos

Internal Examiner

Mechanical Power Department - Faculty of Engineering - Cairo University

Prof. Dr. Ahmed A. Medhat

External

Examiner

Professor of Mechanical Power engineering at Housing & Building National Research Centre

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
2015

ACKNOWLEDGEMENT

I hereby would like to express my deep gratitude and thanks to **Prof. Dr. Essam E. Khalil** and **Dr. Esmail M. Bialy** for the support, continuous encouragement and distinctive supervision throughout the course of this work. They helped providing me with up to date technical references that were of great help in the present work. In addition, they contacted FLUENT personnel in order to negotiate for a free academic version of ANSYS 15 CFD package. Furthermore, they encouraged me to produce several technical papers as a co-author with him and provided the required support for these papers to be accepted.

Also, I cannot express; in words; my thanks and gratitude to **my family** for their great and continuous help and support they provided me to finish this work in a suitable form.

Nevertheless, I cannot forget the support of **my colleagues** in the Mechanical Power Engineering department as well as from my Professors for their encouragement and concern throughout the scope of the work.

Finally, I should express my gratitude for the FLUENT® personnel for their kind interest in the current project and their support via supplying us with a free license of the ANSYS 15 CFD package.

LIST OF CONTENTS

SUBJECT	PAGE
ACKNOWLEDGEMENT	i
CONTENTS	ii
LIST OF TABLES	v
LIST OF FIGURES	vi
SYMBOLS AND ABBREVIATIONS	xiii
ABSTRACT	xvi
CHAPTER 1: INTRODUCTION	1
1.1 Personal Factors	2
1.2 Environmental Factors	2
1.3 Room Air Distribution	4
1.3.1 Mixed air distribution	5
1.3.2 Fully stratified air distribution	7
1.3.3 Partially mixed air distribution	9
CHAPTER 2: LITERATURE REVIEW	12
2.1 Introduction	12
2.2 Papers Concerned With General Flow Investigations in Enclosed Space	14
2.3 Summary and Scope of Present Work	24
CHAPTER 3: GOVERNING EQUATIONS	25
3.1 Introduction	25
3.2 Navier-Stokes Equations	25
3.3 Turbulence Modeling	28
3.3.1 What Is Turbulence?	28

3.3.2 Classical 7	Turbulence Models	29
3.3.3 The k - \in M	lodel	30
3.3.4 Governing	Equation for Turbulent Kinetic Energy k	31
CHADTED A. EVDEDIMENTAI	INVESTIGATION AND VALIDATION	33
4.1 Introduction	INVESTIGATION AND VALIDATION	
		33
-	Office space Configuration	33
4.3 Measuring Ins		34
4.4 Measuring Loc	cations	34
4.5 Experimental	Procedure	36
4.6 Experimental 1	Results	37
4.7 Assessment of	CFD Modelling Validation	38
4.8 Validation Res	sults	39
4.9 Conclusions o	n Validation Results	52
CHAPTER 5 PARAMETRIC CA	SE STUDY	53
5.1 Fanger's Mode	el	53
5.2 Model Descrip	otion	57
5.2.1 Offic	ee Layout	57
5.2.2 Occu	pant's model	57
5.3 Boundary Con	ditions	58
5.4 Summary of th	ne modelled case studies.	60
5.5 Mesh generation	on and mesh independency test.	71
CHAPTER 6 RESULTS AND DI	SCUSSIONS	73
6.1 Results of 1 st	case study.	74
6.1.1 Resu	Its of 1st case study at $ACH = 5$.	74
6.1.2 Resu	Its of 1st case study at $ACH = 6$.	78
6.1.3 Resu	Its of 1st case study at $ACH = 7$.	81

6.2 Results of 2 nd case study.	84
6.2.1 Results of 2^{nd} case study at ACH = 5.	84
$6.2.2$ Results of 2^{nd} case study at ACH = 6 .	88
6.2.3 Results of 2^{nd} case study at ACH = 7.	91
6.3 Results of 3 rd case study.	94
6.3.1 Results of 3^{rd} case study at ACH = 5.	94
$6.3.2$ Results of 3^{rd} case study at ACH = 6 .	97
6.3.3 Results of 3^{rd} case study at ACH = 7.	100
6.4 Results for base case configuration at different ACH (Case 1).	103
6.5 Results of UFAD system:	105
6.5.1 Results of 4th case study (UFAD system in case of not using any partition).	105
6.5.2 Results of 5th case study (UFAD system in case of using a complete partition).	111
6.5.3 Results of 6 th case study (UFAD system in case	115
of using a partial partition.	117
6.6 The effect of underfloor diffuser type on the level of thermal comfort in the office space.	123
CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK	132
7.1 Introduction	132
7.2 Conclusions of the Present Work	132
7.3 Recommendations for Future Work	133
REFERENCES	134

LIST OF TABLES

Table	Description	Page
2.1	Summary for the selected literature work	12
2.2	Outer wall and window boundary conditions for the cases considered in the study	23
3.1	Turbulence Models	28
4.1	Measurements Lines Coordinates	36
4.2	Measurements in the plane $Z = 1.5$ m (middle of the office space)	37
5.1	Terms used in the predicted mean vote (PMV)	54
5.2	Equations for components of the heat balance equation used by Fanger in determining the PMV thermal comfort equations	55
5.3	The main dimensions of the PC, Occupant, chair, and the desk.	58
5.4	The Configuration details for 1st Case study.	60
5.5	Numerical values for the Locations of air supply inlets.	62
5.6	Numerical values for the Locations of air return outlets.	62
5.7	The Configuration details for 2 nd Case study	63
5.8	Numerical values for the Locations of air supply inlets.	64
5.9	Numerical values for the Locations of air return outlets.	65
5.10	The Configuration details for 3 rd Case study.	65
5.11	Numerical values for the Locations of air supply inlets.	67
5.12	Numerical values for the Locations of air return outlets.	67
5.13	The Configuration details for the 4 th , 5 th , and 6 th Case study.	68
5.14	Numerical values for the spaces between air supply inlets.	71
5.15	Element size (m) Vs. Number of cells.	72

LIST OF FIGURES

Figure	Description	Page
1.1	Personal and environmental factors that affect thermal comfort	1
1.2	Classification of Air Distribution Strategies	5
1.3	Air Supplied at Ceiling Induces Room Air into Supply Jet	7
1.4	displacement ventilation system characteristics	8
1.5	UFAD System in Partially Stratified Application	10
2.1	Cubicles in office room	15
2.2	Distributions of velocity, temperature, relative humidity, and contaminant concentration for typical case of underfloor system (simulation 1)	17
2.3	Arrangement of the test room	19
2.4	Sketches of the jets entering the occupied zone for cases A, B, C and D	19
2.5	(x_s/x_{oc}) as function of the design parameter x_s/L	20
2.6	ADPI and ADPI _{DR} as function of Ar	20
2.7	Test facility layout (lengths in mm)	21
2.8	CAD Model of the room and the manikin	22
3.1	Definitions of viscous stress components applied to the faces of a control volume by the Surrounding fluid. Force components are stress components multiplied by areas of corresponding faces	26
3.2	Typical point velocity measurement in turbulent flow	29
4.1	Office space configuration	33
4.2	Lines of measurements near supply grille	34
4.3	Configuration of measurements plane	35
4.4	Contours of velocity magnitude (m/s) at the middle of supply diffuser	35
4.5	Validation process	39
4.6	Temperature at line (1) [measurements versus numerical results]	40
4.7	Temperature at line (2) [measurements versus numerical results]	40
4.8	Temperature at line (3) [measurements versus numerical results]	41
4.9	Temperature at line (4) [measurements versus numerical results]	41
4.10	Temperature at line (5) [measurements versus numerical results]	42
4.11	Temperature at line (6) [measurements versus numerical results]	42
4.12	Temperature at line (7) [measurements versus numerical results]	43
4.13	Temperature at line (8) [measurements versus numerical results]	43
4.14	Temperature at line (9) [measurements versus numerical results]	44

4.15	Temperature at line (10) [measurements versus numerical results]	44
4.16	Temperature at line (11) [measurements versus numerical results]	45
4.17	Temperature at line (12) [measurements versus numerical results]	45
4.18	Velocity at line (1) [measurements versus numerical results]	46
4.19	Velocity at line (2) [measurements versus numerical results]	46
4.20	Velocity at line (3) [measurements versus numerical results]	47
4.21	Velocity at line (4) [measurements versus numerical results]	47
4.22	Velocity at line (5) [measurements versus numerical results]	48
4.23	Velocity at line (6) [measurements versus numerical results]	48
4.24	Velocity at line (7) [measurements versus numerical results]	49
4.25	Velocity at line (8) [measurements versus numerical results]	49
4.26	Velocity at line (9) [measurements versus numerical results]	50
4.27	Velocity at line (10) [measurements versus numerical results]	50
4.28	Velocity at line (11) [measurements versus numerical results]	51
4.29	Velocity at line (12) [measurements versus numerical results]	51
5.1	Configuration of the simulated office.	57
5.2	Configuration of occupant's model.	58
5.3	Mean skin temperature as a function in activity	59
5.4	Case 1 Configuration.	61
5.5	Locations of the air Supply inlets for case 1.	61
5.6	Locations of the air return outlets for case 1.	62
5.7	Case 2 Configuration.	63
5.8	Locations of the air Supply outlets for case 2.	64
5.9	Locations of the air return outlets for case 2.	64
5.10	Case 3 Configuration.	65
5.11	Locations of the air Supply inlets for case 3	66
5.12	Locations of the air return outlets for case 3	66
5.13	Case 4 Configuration.	69
5.14	Case 5 Configuration.	69
5.15	Case 6 Configuration.	70
5.16	Locations of the Air supply inlets for case 4, 5, and 6.	70
5.17	Locations of the air return outlets case 4, 5, and 6.	71
	· · ·	, ,

5.18 Temperature gradient at a vertical line for different mesh element sizes. 72 5.19 Velocity gradient at a vertical line for different mesh element sizes. 72 6.1 Case 1 Temperature contours, vertical plane at X = 5.3 m (ACH = 5) 74 6.2 Case 1 Temperature contours, vertical plane at Z = 5.86 m (ACH = 5) 74 Case 1 Velocity contours, vertical plane at X = 5.3 m (ACH = 5) 6.3 75 6.4 Case 1 Velocity contours, vertical plane at Z = 5.86 m (ACH = 5) 75 6.5 Case 1 Relative Humidity contours, vertical plane at X = 5.3 m (ACH = 5) 76 6.6 Case 1 Relative Humidity contours, vertical plane at Z = 5.86 m (ACH = 5) 76 6.7 Case 1 PMV contours, vertical plane at X = 5.3 m (ACH = 5) 77 6.8 Case 1 CO₂ concentration, horizontal plane at Y = 1.14 m (ACH = 5) 77 6.9 Case 1 Temperature contours, vertical plane at X = 5.3 m (ACH = 6) 78 6.10 Case 1 Temperature contours, vertical plane at Z = 5.86 m (ACH = 6) 78 6.11 Case 1 Velocity contours, vertical plane at X = 5.3 m (ACH = 6) 79 6.12 Case 1 Velocity contours, vertical plane at Z = 5.86 m (ACH = 6). 79 6.13 Case 1 Relative Humidity contours, vertical plane at X = 5.3 m (ACH = 6) 80 6.14 Case 1 Relative Humidity contours, vertical plane at Z = 5.86 m (ACH = 6) 80 6.15 Case 1 PMV contours, vertical plane at X = 5.3 m (ACH = 6) 81 6.16 Case 1 CO₂ concentration, horizontal plane at Y = 1.14 m (ACH = 6) 81 6.17 Case 1 Temperature contours, vertical plane at X = 5.3 m (ACH = 7) 82 6.18 Case 1 Temperature contours, vertical plane at Z = 5.86 m (ACH = 7) 82 Case 1 Velocity contours, vertical plane at X = 5.3 m (ACH = 7) 6.19 82 6.20 Case 1 Velocity contours, vertical plane at Z = 5.86 m (ACH = 7) 83 6.21 Case 1 Relative Humidity contours, vertical plane at X = 5.3 m (ACH = 7) 83 6.22 Case 1 Relative Humidity contours, vertical plane at Z = 5.86 m (ACH = 7) 83 6.23 Case 1 PMV contours, vertical plane at X = 5.3 m (ACH = 7) 84 6.24 Case 1 CO₂ concentration, horizontal plane at Y = 1.14 m (ACH = 7) 84 6.25 Case 2 Temperature contours, vertical plane at X = 5.3 m (ACH = 5) 85 6.26 Case 2 Temperature contours, vertical plane at Z = 4 m (ACH = 5) 85 6.27 Case 2 Velocity contours, vertical plane at X = 5.3 m (ACH = 5) 86 6.28 Case 2 Velocity contours, vertical plane at Z = 4 m (ACH = 5). 86

6.29 Case 2 Relative Humidity contours, vertical plane at X = 5.3 m (ACH = 5) 86 6.30 Case 2 Relative Humidity contours, vertical plane at Z = 4 m (ACH = 5) 87 6.31 Case 2 PMV contours, vertical plane at X = 5.3 m (ACH = 5) 87 6.32 Case 2 CO_2 concentration, vertical plane at Z = 4 m (ACH = 5) 87 6.33 Case 2 Temperature contours, vertical plane at X = 5.3 m (ACH = 6) 88 6.34 Case 2 Temperature contours, vertical plane at Z = 4 m (ACH = 6) 88 6.35 Case 2 Velocity contours, vertical plane at X = 5.3 m (ACH = 6) 89 6.36 Case 2 Velocity contours, vertical plane at Z = 4 m (ACH = 6). 89 6.37 Case 2 Relative Humidity contours, vertical plane at X = 5.3 m (ACH = 6) 89 6.38 Case 2 Relative Humidity contours, vertical plane at Z = 4 m (ACH = 6) 90 6.39 Case 2 PMV contours, vertical plane at X = 5.3 m (ACH = 6) 90 6.40 Case 2 CO_2 concentration, vertical plane at Z = 4 m (ACH = 6) 90 6.41 Case 2 Temperature contours, vertical plane at X = 5.3 m (ACH = 7) 91 6.42 Case 2 Temperature contours, vertical plane at Z = 4 m (ACH = 7) 91 Case 2 Velocity contours, vertical plane at X = 5.3 m (ACH = 7) 6.43 92 6.44 Case 2 Velocity contours, vertical plane at Z = 4 m (ACH = 7). 92 6.45 Case 2 Relative Humidity contours, vertical plane at X = 5.3 m (ACH = 7) 92 6.46 Case 2 Relative Humidity contours, vertical plane at Z = 4 m (ACH = 7) 93 6.47 Case 2 PMV contours, vertical plane at X = 5.3 m (ACH = 7) 93 6.48 Case 2 CO₂ concentration, vertical plane at Z = 4 m (ACH = 7) 93 6.49 Case 3 Temperature contours, vertical plane at X = 5.3 m (ACH = 5) 94 6.50 Case 3 Temperature contours, vertical plane at Z = 5.86 m (ACH = 5) 94 6.51 Case 3 Velocity contours, vertical plane at X = 5.3 m (ACH = 5) 95 6.52 Case 3 Velocity contours, vertical plane at Z = 5.86 m (ACH = 5). 95 6.53 Case 3 Relative Humidity contours, vertical plane at X = 5.3 m (ACH = 5) 95 6.54 Case 3 Relative Humidity contours, vertical plane at Z = 5.86 m (ACH = 5) 96 6.55 Case 3 PMV contours, vertical plane at X = 5.3 m (ACH = 5) 96 6.56 Case 3 CO₂ concentration, horizontal plane at Y = 1.14 m(ACH = 5) 96 6.57 Case 3 Temperature contours, vertical plane at X = 5.3 m (ACH = 6) 97

6.58	Case 3 Temperature contours, vertical plane at $Z = 5.86$ m (ACH = 6)	97
6.59	Case 3 Velocity contours, vertical plane at $X = 5.3$ m (ACH = 6)	98
6.60	Case 3 Velocity contours, vertical plane at $Z = 5.86$ m (ACH = 6).	98
6.61	Case 3 Relative Humidity contours, vertical plane at $X = 5.3$ m (ACH = 6)	98
6.62	Case 3 Relative Humidity contours, vertical plane at $Z = 5.86$ m (ACH = 6)	99
6.63	Case 3 PMV contours, vertical plane at $X = 5.3$ m (ACH = 6)	99
6.64	Case 3 CO ₂ concentration, horizontal plane at Y = 1.14 m (ACH = 6)	99
6.65	Case 3 Temperature contours, vertical plane at $X = 5.3$ m (ACH = 7)	100
6.66	Case 3 Temperature contours, vertical plane at $Z = 5.86$ m (ACH = 7)	100
6.67	Case 3 Velocity contours, vertical plane at $X = 5.3$ m (ACH = 7)	101
6.68	Case 3 Velocity contours, vertical plane at $Z = 5.86$ m (ACH = 7).	101
6.69	Case 3 Relative Humidity contours, vertical plane at $X = 5.3$ m (ACH = 7)	101
6.70	Case 3 Relative Humidity contours, vertical plane at $Z = 5.86$ m (ACH = 7)	102
6.71	Case 3 PMV contours, vertical plane at $X = 5.3$ m (ACH = 7)	102
6.72	Case 3 CO_2 concentration, horizontal plane at Y = 1.14 m (ACH = 7)	102
6.73	Location of selected Line "A" in the office space.	103
6.74	The effect of ACH variation on temperature contours along line "A"	104
6.75	The effect of ACH variation on velocity contours along line "A"	104
6.76	The effect of ACH variation on Humidity contours along line "A"	104
6.77	The effect of ACH variation on PMV contours along line "A"	105
6.78	The effect of ACH variation on CO ₂ concentration along line "A"	105
6.79	Case 4 Temperature contours, vertical plane at $X = 7.8 \text{ m}$	106
6.80	Case 4 Temperature contours, horizontal plane at $Y = 1.14 \text{ m}$	106
6.81	Case 4 Temperature contours, vertical plane at $Z = 3.1 \text{ m}$	106
6.82	Case 4 Relative Humidity contours, vertical plane at $X = 7.8 \text{ m}$	107
6.83		
6.84	Case 4 Relative Humidity contours, horizontal plane at $Y = 1.14 \text{ m}$	107
0.01	Case 4 Relative Humidity contours, horizontal plane at $Y = 1.14$ m Case 4 Relative Humidity contours, vertical plane at $Z = 3.1$ m	107 107
6.85	•	

6.87	Case 4 Velocity contours, vertical plane at $Z = 3.1 \text{ m}$	109
6.88	Case 4 Velocity Vectors, vertical plane at $X = 7.8 \text{ m}$	109
6.89	Case 4 Velocity Vectors, vertical plane at $Z = 3.1 \text{ m}$	109
6.90	Case 4 CO_2 concentration, vertical plane at Y = 1.14 m	110
6.91	Case 4 CO_2 concentration, vertical plane at $Z = 3.1$ m	110
6.92	Case 4 PMV contours, vertical plane at $X = 5.3$ m	111
6.93	Case 4 PMV contours, Horizontal plane at Y = 1.14 m	111
6.94	Case 5 Temperature contours, vertical plane at $X = 7.8 \text{ m}$	112
6.95	Case 5 Temperature contours, horizontal plane at $Y = 1.14 \text{ m}$	112
6.96	Case 5 Temperature contours, vertical plane at $Z = 3.1 \text{ m}$	112
6.97	Case 5 Relative Humidity contours, vertical plane at $X = 7.8 \text{ m}$	113
6.98	Case 5 Relative Humidity contours, horizontal plane at $Y = 1.14 \text{ m}$	113
6.99	Case 5 Relative Humidity contours, vertical plane at $Z = 3.1 \text{ m}$	113
6.100	Case 5 Velocity contours, vertical plane at $X = 7.8 \text{ m}$	114
6.101	Case 5 Velocity contours, horizontal plane at $Y = 1.14 \text{ m}$	114
6.102	Case 5 Velocity contours, vertical plane at $Z = 3.1 \text{ m}$	115
6.103	Case 5 Velocity Vectors, vertical plane at $X = 7.8 \text{ m}$	115
6.104	Case 5 Velocity Vectors, vertical plane at $Z = 3.1 \text{ m}$	115
6.105	Case 5 CO_2 concentration, vertical plane at Y = 1.14 m	116
6.106	Case 5 CO_2 concentration, vertical plane at $Z = 3.1$ m	116
6.107	Case 5 PMV contours, vertical plane at $X = 5.3 \text{ m}$	117
6.108	Case 5 PMV contours, Horizontal plane at $Y = 1.14 \text{ m}$	117
6.109	Case 6 Temperature contours, vertical plane at $X = 7.8 \text{ m}$	118
6.110	Case 6 Temperature contours, horizontal plane at $Y = 1.14 \text{ m}$	118
6.111	Case 6 Temperature contours, vertical plane at $Z = 3.1 \text{ m}$	118
6.112	Case 6 Relative Humidity contours, vertical plane at $X = 7.8 \text{ m}$	119
6.113	Case 6 Relative Humidity contours, horizontal plane at $Y = 1.14 \text{ m}$	119
6.114	Case 6 Relative Humidity contours, vertical plane at $Z = 3.1 \text{ m}$	119

6.115	Case 6 Velocity contours, vertical plane at $X = 7.8 \text{ m}$	120
6.116	Case 6 Velocity contours, horizontal plane at Y = 1.14 m	120
6.117	Case 6 Velocity contours, vertical plane at $Z = 3.1 \text{ m}$	121
6.118	Case 6 Velocity Vectors, vertical plane at $X = 7.8 \text{ m}$	121
6.119	Case 6 Velocity Vectors, vertical plane at $Z = 3.1 \text{ m}$	121
6.120	Case 6 CO_2 concentration, vertical plane at $Y = 1.14$ m	122
6.121	Case 6 CO_2 concentration, vertical plane at $Z = 3.1$ m	122
6.122	Case 6 PMV contours, vertical plane at $X = 5.3$ m	122
6.123	Case 6 PMV contours, Horizontal plane at $Y = 1.14 \text{ m}$	123
6.124	Case 4 Velocity contours, horizontal plane at $Y = 1.14$ m (Round floor displacement diffuser)	
6.125	Case 4 Temperature contours, vertical plane at $X = 7.8$ m (Round floor displacement diffuser)	124 124
6.126	Case 4 PMV contours, Horizontal plane at $Y = 1.14$ m (Round floor displacement diffuser)	124
6.127	Case 4 PMV contours, vertical plane at $X = 5.3$ m (Round floor displacement diffuser)	125
6.128	Case 4 Velocity contours, horizontal plane at $Y = 1.14$ m (Circular diffuser)	125
6.129	Case 4 Temperature contours, vertical plane at $X = 7.8$ m (Circular diffuser)	126
6.130	Case 4 PMV contours, Horizontal plane at Y = 1.14 m (Circular diffuser)	126
6.131	Case 4 PMV contours, vertical plane at $X = 5.3$ m (Circular diffuser)	126
6.132	Case 4 Velocity contours, horizontal plane at Y = 1.14 m (Square diffuser)	127
6.133	Case 4 Temperature contours, vertical plane at $X = 7.8$ m (Square diffuser)	127
6.134	Case 4 PMV contours, Horizontal plane at Y = 1.14 m (Square diffuser)	128
6.135	Case 4 PMV contours, vertical plane at $X = 5.3$ m (Square diffuser)	128
6.136	Case 4 Velocity contours, horizontal plane at Y = 1.14 m (Swirl diffuser)	129
6.137	Case 4 Temperature contours, vertical plane at $X = 7.8$ m (Swirl diffuser)	129
6.138	Case 4 PMV contours, Horizontal plane at $Y = 1.14$ m (Swirl diffuser)	129
6.139	Case 4 PMV contours, vertical plane at $X = 5.3$ m (Swirl diffuser)	130
6.140	Office PPD histogram	131