Clinical Significance of Quantitative **D-Dimer Testing IN Suspected Deep**Vein Thrombosis

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical and Chemical Pathology

Presented by

Rasha Mohamed Attia Mohamed (M.B.B.Ch.)
Ain Shams University

Supervised by

Prof. Dr. Manal Fawzy Ghozlan

Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Dr. Mona Ahmed Ismail

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Dr. Doaa Ahmed Gamal Eissa

Lecturer of Clinical and Chemical Pathology
Faculty of Medicine - Ain Shams University
Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University

LIST OF CONTENTS

Ti	Title Page		
•	Introduction and Aim of the Work		
•	Review of Literature:		
	Chapter : Thrombophilia°		
	Chapter : Diagnosis of Deep Venous Thrombosis		
	Chapter ": D-Dimer		
•	Patients and Methods	,	
•	Results		
•	Discussion9 £		
•	Summary and Conclusion	۲	
•	Recommendations	0	
•	References	٦	
•	Arabic Summary	_	

LIST OF FIGURES

Fig. No	Title Page
Figure (\):	Results of testing for congenital hypercoagulable states
Figure (⁷):	Response to vascular injury
Figure (*):	Platelets activation pathway
Figure (٤):	Pathways of blood coagulation during hemostasis and thrombosis
Figure (°):	Congenital and acquired risk factors for venous thrombo-embolism
Figure (¹):	Antithrombin reactive site loop ۲٥
Figure ('):	The protein C pathway٢٦
Figure (^):	Plasmin formation & degradation
Figure (٩):	Patients with a score of less than 'were considered unlikely and those with a score of '\footnote{or more were considered likely to have DVT
Figure (' ·):	Clinical algorithm for diagnosis of pulmonary embolism

LIST OF TABLES

Tab. No	Title	Page
Table (\):	Thrombophilias and Genetic Variation	۱۸
Table (۲):	Diagnostic criteria in APS	۳۷
Table (*):	Clinical characteristics for predicting the pretest probability of deep venous thrombosis	٤١
Table (٤):	Commercially available D-dimer assays	٥٧
Table (°):	Clinical data sheet of control individuals (group I)	YA
Table (¹):	Clinical data sheet of duplex positive patients	٧٩
Table (^v):	Clinical data sheet of duplex negative patients (group III)	۸۰
Table (^):	Laboratory data of control individuals (group I)	۸۱
Table (٩):	Laboratory data of duplex positive patients (group II)	۸۲
Table (' ·):	Laboratory data of duplex negative patients (group III)	۸۳
Table (' '):	Demographic and clinical data of the studied groups	٨٤
Table (' '):	Laboratory data of the studied groups	۸۵
Table (۱۳): (Comparison between group I and group II patients as regards clinical and demographic parameters	ለገ

LIST OF TABLES (CONT.)

Tab. No	Title	Page
Table (\fi):	Comparison between group I and group II patients as regards laboratory parameters	AY
Table (۱°):	Comparison between group I and group III patients as regards clinical parameters	۸۸
Table (۱۲):	Comparison between group I and group III patients as regards laboratory parameters	۸۹
Table (\\'):	Comparison between group II and group III patients as regards clinical parameters	۹۰
Table (\^):	Comparison between group II and group III patients as regards laboratory parameters	91
Table (۱۹):	Diagnostic performance of D-dimer to differentiate between control group from duplex positive patients	۹۲
Table ('``):	Diagnostic performance of D-dimer to differentiate between duplex positive patients from duplex negative patients	۹۳

LIST OF ABBREVIATIONS

Acute aortic dissection
Emergency department.
Antiphospholipid antibodies
Activated protein C
Activated partial thromboplastin time
Antithrombin III
Body mass index
Complete blood count
Colour coded duplex sonography
Computed tomography
Computed tomographic pulmonary
angiography
Computed tomographic venography
Compression ultra sonography
Dissamenated intravascular coagulation
Deep venous thrombosis
Enzyme-linked immuno-sorbent assay
Prothrombin
Fibrin related marker
Heparin-induced thrombocytopenia
Potassium ethylene diamine tetra-acetic
Magnetic resonance imaging
Methtelentetrahydrofolate reductase
Negative predictive value
Oral Contraceptives pills
Protein C
Point of care
Platelet Poor Plasma
Positive predictive value
Protein S

LIST OF ABBREVIATIONS (CONT.)

PSGL -\	P-selectin glycoprotein ligand \
PT	Prothrombin time
PTT	Partial tromboplastin time
RCL	Reactive centre loop
ROC	Receiver operating characteristic
s	Sensitivity
	Standard deviation
SLE	Systemic lupus erythematosus
	Single nucleotide polymorphism
SP	Specificity
T	
TLC	Total leucocytic count
TM	Thrombomodulin
тм	Thrombomodulin
t-PA	Tissue plasminogen activator
U-PA	Urokinase-type plasminogen activator
us	Ultra sonography
V/Q Scan	Ventilation-perfusion scintigraphy
Va	Activated factor V
VIIIa	Activated factor VIII
Vitamin B	Pyridoxal phosphate
Vitamin B\٢.	Cobalamin
VTE	Venous thromboembolism
X ²	Chi-square test
	Prothrombin gene mutation

ACKNOWLEDGEMENT

All braise are to Allah and all thanks. He has guided and enabled me by his mercy to fulfil this thesis, which I hope to be beneficial for people.

I would like to express my deepest gratitude and sincere appreciation to Prof. Dr. Manal Fawzy Ghozlan, Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University for her continuous encouragement, her kind support and appreciated suggestions that guided me to accomplish this work.

I am also grateful to Dr. Mona Ahamed Ismail, Assistant Professor of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University who freely gave her time, effort and experience along with continuous guidance through out this work.

Special thanks are extended to Dr.Doaa Ahamed Gamal Eissa, Lecturer of Clinical and Chemical Pathology, Faculty of Medicine, Ain Shams University, for her constant encouragement and advice whenever needed.

An endless thanks for my family, my husband for their support without it, I would never completed this work.

🖎 Rasha Mohamed Attia

INTRODUCTION

Deep venous thrombosis (DVT) is a common condition with significant morbidity and mortality if not diagnosed and treated in a timely manner. The clinical signs and symptoms of DVT are non-specific and objective testing is required for diagnosis (Heim et al., **.**).

Accurate diagnosis of deep-vein thrombosis minimizes the risk of thromboembolic complication and averts the of patients without thrombosis to the risk exposure of anticoagulant therapy (Wells et al., **• **).

Diagnostic imaging with venography was previously the gold standard for DVT evaluation and may still be utilized if other techniques are inconclusive. Although effective, the technique is invasive, expensive, time consuming, requires specialized personnel and may introduce a variety of complications (Fox and Bertoglio, 7.11).

Compression ultra sonography (CUS) is a highly accurate method for the detection of deep vein thrombosis in symptomatic outpatients and has replaced venography and other diagnostic methods in common practice (*Bernardi et al.*, **...**). However ultrasonography is expensive and time consuming (Chen et al., Y . . A).

Moreover, a significant proportion of out patients may be lost at follow-up and has poor sensitivity for detection of calf vein

thrombosis. In addition, three fourths or more of the patients with suspected DVT have negative ultra sound findings and require repeated imaging to identify the further 7% to 7% in whom occlusive proximal DVT becomes apparent in a week (Kelly et al., r . . r).

Therefore, diagnostic strategies have been developed aiming at reduction of the need for imaging techniques and instead including D-dimer testing (Jennersjo et al., Y...). Plasma D-dimers are generated when the endogenous fibrinolytic system degrades fibrin.as in venous thromboembolism, and they consist of ⁷ identical subunits derived from ⁷ fibrin molecules. Unlike fibrinogen degradation product, which are derived from fibrinogen and fibrin (Kelly et al., "..."). It's a degradation product of cross linked fibrin.D-dimer assays are sensitive but non-specific marker for venous thromboembolism (Wells, ** . *).

D-dimer testing has become rapid simple and inexpensive and it has the potential to detect thrombosis in any part of the venous system. If the sensitivity of the D-dimer test for deep venous thrombosis consistently very high, its negative predective value will also be high and reliably exclude the presence of disease. Therefore D-dimer assays has been suggested as an initial test to rule out DVT to reduce the number of patients requiring diagnostic

Normal result from a highly sensitive D-dimer test effectively ruled out deep vein thrombosis among patients with

either low or moderate clinical. This makes ultrasound testing unnecessary (Fancher et al., Y · · £).

When D-dimer testing is positive, CUS or colour coded duplex sonography (CCDS) should initially be performed to accurately exclude or confirm DVT. In patients with suspected DVT, serial CUS can be avoided if the D-dimer test is negative. Whereas in cases of negative sonographic findings, an additional negative D-dimer test allows exclusion of acute proximal DVT (Melly et al., $\gamma \cdot \cdot \gamma$).

AIM OF THE STUDY

The aim of this study is to assess the role of D-Dimer and its effectiveness in diagnosis and ruling out DVT in clinically suspected patients, as well as the possibility of reducing the need of ultrasoungraphy.

THROMBOPHILIA

Hypercoagulable states can be defined as a group of inherited or acquired conditions associated with a predisposition to venous thrombosis, arterial thrombosis or both. Although most inherited conditions appear to increase only the risk of venous thromboembolic events (VTEs), some of the acquired conditions have been associated with both VTEs and arterial thrombosis. These include cancer, myeloproliferative syndromes, antiphospholipid antibodies (APAs), hyperhomocysteinemia, and heparin-induced thrombocytopenia (*Deitcher*, **•1•).

Thrombosis becomes more common as age increases and its occurrence is frequently associated with risk factors such as trauma (accidental or surgical), pregnancy, malignant disease, immonobilisation or oral contraceptives. Thrombosis, however, may develop at a younger age and sometimes in the absence of an easily identifiable risk factor. Recently it has become increasingly recognised that patients who have defects or abnormalities which alter the physiological haemostatic balance in favour of fibrin formation or persistence are at increased risk of clinical thrombosis. These patients may be considered to have thrombophilia. It must, however, be realised that many patients with laboratory evidence of a thrombophilic abnormality remain clinically asymptomatic (*Dahlbäck*, **.***\(\textit{A} \)).

History of thrombophilia:

Egeberg in 1970 was the first to describe a thrombophilia caused by a hereditary deficiency of antithrombin. Members of the family described in the report suffered from recurrent venous thrombosis, and the disorder was inherited in an autosomal dominant pattern. The deficiency of this naturally occurring anticoagulant protein remained the only identified cause of inherited thrombophilia for many years (Greer, **.**).

Since the early \9\lambda \s there has been an explosion of new knowledge, with the identification of protein C (PC) deficiency, and three years later, protein S (PS) deficiency was described as additional causes of inherited thrombophilia. However, altogether these three defects only account for less than \o'\'. of selected cases of juvenile and/or recurrent venous thrombosis and for less than \.'.\' of unselected cases, and this was disappointing at that time.

This situation changed dramatically in 1997 when Dahlback and coworkers reported that venous thrombosis often is associated with hereditary resistance to activated protein C (APC) the protease generated by the thrombomodulin-PC anticoagulant pathway to inactivate activated factor V and VIII (Va and VIIIa).

APC resistance is associated with factor V Leiden which is the most frequent cause of inherited thrombophilia, accounting for $\forall \cdot \%$ to $\circ \cdot \%$ of cases (*Greer*, $\forall \cdot \cdot \forall$).

Mild hyperhomocysteinemia was found in \9% of patients with juvenile venous thrombosis and family studies showed that in most cases the abnormality was inherited (Oger et al., Y. . V). While the genetic lesions for deficiencies of Antithrombin III deficiency, Protein C deficiency, Protein S deficiency, and activated protein C resistance can be found in single genes encoding the defective proteins, inherited hyperhomocysteinemia may be caused by defects in several genes encoding different enzymes involved in the metabolism of the amino acid (*Oger et al.*, *·· *).

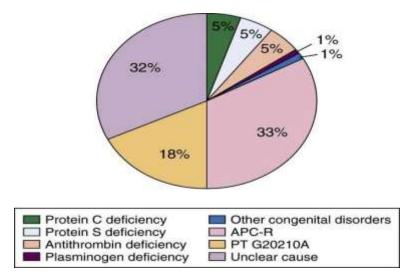


Figure (1): Results of testing for congenital hypercoagulable states. APC-R, activated protein C resistance; PT GY-Y1-A, prothrombin GY-Y1-A mutation (Deitcher et al., * · · ·).