"Impact of Some Genetic and Biochemical Factors on Insulin Resistance in Polycystic Ovary Syndrome"

A thesis submittedfor the partial fulfillment of Doctor of Philosophy Degree in Pharmaceutical Sciences (Biochemistry)

бу:

Rania Shafik Salah El-Din Abd-El-Razek

Assistant Lecturer of Biochemistry, Faculty of Pharmacy, Ain Shams University

Master Degree in Pharmaceutical Sciences (Biochemistry), Ain Shams University, 2008

Under supervision of:

Dr. Hala Osman El-Mesallamy

Professor of Biochemistry
Vice Dean for Graduate Studies and Research
Faculty of Pharmacy
Ain Shams University

Dr. Tamer Ahmed El-Refaie

Lecturer of Obstetrics and Gynecology
Obstetrics and Gynecology Department
Faculty of Medicine
Ain Shams University

Biochemistry Department Faculty of Pharmacy Ain Shams University (2013)

بسم الله الرحمن الرحيم

"وَيَسْأَلُونَكَ عَنِ الرُّوحِ قُلِ الرُّوحُ مِنْ أَمْرِ رَبِّي وَمَا أُوتِيتُمْ مِنَ الْعِلْمِ إِلَّا قَلِيلا"

صدق الله العظيم

سورة الإسراء الأية رقم "٨٥"

LIST OF ABBREVIATIONS

ABBREVIATION	MEANING
ABI	Applied Biosystems International
ACE	Angiotensin converting enzyme
ACTH	Adrenocorticotropic hormone
Ang	Angiotensin
ASRM	American Society of Reproductive Medicine
AT ₁ R	Angiotensin II type 1 receptor
AT_2R	Angiotensin II type 2 receptor
BMI	Body mass index
ВР	Blood pressure
CD40	Cluster of differentiation 40
CD40L	CD40 ligand
CI	Confidence interval
CVD	Cardiovascular disease
DBP	Diastolic blood pressure
DNA	Deoxyribonucleic acid
ELISA	Enzyme linked immunosorbent assay
ESHRE	European Society of Human Reproduction and Embryology
FBG	Fasting blood glucose
FFAs	Free fatty acids
FI	Fasting insulin

FSH	Follicle stimulating hormone
g	Gravity
GIR	Glucose to insulin ratio
GnRH	Gonadotropin releasing hormone
НС	Hip circumference
HDL-C	High density lipoprotein-cholesterol
HOMA-IR	Homeostasis model assessment of insulin resistance
hs-CRP	High sensitivity C-reactive protein
HWE	Hardy-Weinberg Equilibrium
IGFBP-1	Insulin like growth factor binding protein-1
IGT	Impaired glucose tolerance
ILs	Interleukins
IQR	Inquartile range
IR	Insulin resistance
IRS	Insulin receptor substrate
LDL-C	Low density lipoprotein-cholesterol
LH	Luteinizing hormone
MGB	Minor groove binder
NAPD	Nicotinamide adenine dinucleotide phosphate
NCEP	National Cholesterol Education Program
NF- B	Nuclear factor kappa-light-chain-enhancer of activated B cells
PCOS	Polycystic ovary syndrome
PCR	Polymerase chain reaction
PI-3K	Phosphatidylinositide-3 kinase

QUICKI	Quantitative insulin sensitivity check index
r	Pearson's correlation coefficient
r_s	Spearman's correlation coefficient
RAS	Renin angiotensin system
ROS	Reactive oxygen species
rs number	Reference single nucleotide polymorphism number
SBP	Systolic blood pressure
sCD40L	Soluble CD40 ligand
S.D.	Standard deviation
SHBG	Sex hormone binding globulin
SNP	Single nucleotide polymorphism
TAG	Triacylglycerol
TC	Total cholesterol
T2DM	Type 2 diabetes mellitus
TNF-	Tumor necrosis factor-alpha
TT	Total testosterone
TVU	Transvaginal ultrasonography
UTR	Untranslated region
WC	Waist circumference
WHO	World health organization
WHR	Waist to hip ratio

List of Abbreviations

LIST OF CONTENTS

SUBJECT	PAGE
LIST OF ABBREVIATIONS	I
LIST OF FIGURES	ΙV
LIST OF TABLES	VII
PUBLICATIONS RELATED TO THE THESIS	IX
1. INTRODUCTION AND AIM OF THE WORK	1
2. LITERATURE REVIEW	4
2.1. Syndrome background and historical perspective	4
2.2. Incidence and scope of the problem	4
2.3. Etiology of polycystic ovary syndrome	5
2.4. Diagnosis of polycystic ovary syndrome	6
2.5. Clinical features of polycystic ovary syndrome	7
2.6. Pathophysiology of polycystic ovary syndrome	14
3. SUBJECTS AND METHODS	35
4. RESULTS	73
5. DISCUSSION	97
6. SUMMARY AND CONCLUSIONS	114
7. RECOMMENDATIONS	118
8. REFERENCES	119
9. APPENDIX	153
ARABIC SUMMARY	

LIST OF FIGURES

FIGURE NO.	FIGURE TITLE	PAGE
1	The hallmarks of PCOS (hyperinsulinemia and hyperandrogenism are part of a vicious circle)	6
2	Schematic representation of the change in emphasis from early age reproductive disorders to long-term metabolic problems	7
3	Ultrasound picture of typical polycystic ovary	10
4	Pathophysiology of dyslipidemia in PCOS and its possible mechanisms.	13
5	Pathogenesis of PCOS	15
6	The hypothalamic–pituitary–ovarian axis	16
7	A summary of the ovarian and adrenal steroidogenesis	17
8	A simplified view of the insulin signaling pathway	19
9	The serine phosphorylation theory of the IRS-1	21
10	Role of hyperinsulinemia in driving hyperandrognesim in PCOS	22
11	Structures of CD40 receptor, CD40L and sCD40L	26
12	A simplified view of the 'classic' circulating RAS and amino acids sequence of circulating angiotensins	29
13	Mechanisms of Ang II-mediated IR	32
14	Schematic of the AT ₁ R homo sapiens protein	33
15	The AT_1R transcript	34
16	Standard curve of follicle stimulating hormone	42
17	Standard curve of luteinizing hormone	42
18	Standard curve of testosterone	44

19	Standard curve of insulin	49
20	Standard curve of high sensitivity C-reactive protein	59
21	Serial dilutions of soluble cluster of differentiation 40 ligand standard	61
22	Standard curve of soluble cluster of differentiation 40 ligand.	62
23	A spin-column for DNA isolation	63
24	TaqMan probe chemistry mechanism	68
25	An example of allelic discrimination plot	70
26	An example of SNP assay allele 1 curve	71
27	An example of SNP assay allele 2 curve	71
28	Scatter-plot chart showing FSH levels in the studied groups	75
29	Scatter-plot chart showing LH levels in the studied groups	76
30	Scatter-plot chart showing LH/FSH ratio in the studied groups.	76
31	Scatter-plot chart showing testosterone levels in the studied groups	76
32	Bar-chart showing leukocytes and differential leukocytes count in the studied groups	79
33	Box-plot chart showing hs-CRP levels in the studied groups.	80
34	Box-plot chart showing sCD40L levels in the studied groups.	81
35	Pie-chart showing the percentage difference between both groups regarding $AT_{l}R$ genotype variants	83
36	Bar-chart showing difference between both groups regarding existence of the allele C in AT_IR gene	83
37	Box-plot charts showing differences in group II between both genotypes regarding the levels of a) FI, b) HOMA-IR c) GIR, d) QUICKI, e) sCD40L	87

38	Scatter-plot charts showing correlation between LH and a) testosterone, b) FBG, c) FI, d) LDL-C	91
39	Scatter-plot charts showing correlation between LH/FSH ratio and a) testosterone, b) OUICKI, c) leukocytes count, d) granulocytes count, e) hs-CRP, f) sCD40L	92
40	Scatter-plot charts showing correlation between testosterone and a) FBG, b) FI, c) QUIKI, d) TC, e) granulocytes count	93
41	Scatter-plot charts showing correlation between HOMA-IR and a) age at menarche, b) LH, c) LH/FSH ratio, d) testosterone	94
42	Scatter-plot charts showing correlation between HOMA-IR and a) TC, b) leukocytes count, c) granulocytes count, d) hs-CRP, e) sCD40L	95

LIST OF TABLES

TABLE NO.	TABLE TITLE	PAGE
1	Clinical data of the studied groups	73
2	Anthropometric measures of the studied groups	74
3	Insulin resistance parameters of the studied groups	77
4	Lipids profile of the studied groups	78
5	The distribution of hs-CRP levels among the studied groups	80
6	The difference between pre-obese and obese PCOS women regarding hs-CRP and sCD40L levels	8 1
7	The association between hs-CRP and sCD40L levels with PCOS before and after adjustment for obesity	8 1
8	The genotype frequencies of the $(AT_1R/A1166C)$ gene polymorphism in the studied groups	82
9	The differences between AC and AA genotypes of the $(AT_1R/A1166C)$ SNP regarding clinical data and anthropometric measures among group II	84
10	The differences between AC and AA genotypes of the $(AT_IR/A1166C)$ SNP regarding biochemical parameters variables among group II	86
11	Binary logistic regression analysis between FI, HOMA-IR, QUICKI and sCD40L with $(AT_1R/A1166C)$ SNP in group II	88
12	The differences between women having C allele and those lacking that allele at position 1166 of AT_IR gene regarding HOMA-IR levels in the studied groups	89
13	The association between sCD40L with hs-CRP and with parameters of IR in PCOS group before and after adjustment for obesity	

14	Simple and multiple linear stepwise regression analysis using HOMA-IR as dependent variable	96
	INDIVIDUAL DATA OF THE CONTROL GROUP 15.a: Clinical data, anthropometric measures and hormonal	153
15	profile of the control group	154
	profile of the control group (cont.)	155
	control group	156
	the control group (cont.)	
16	INDIVIDUAL DATA OF THE PCOS GROUP 16.a: Clinical data, anthropometric measures and hormonal profile of PCOS group	157
	16.b: Clinical data, anthropometric measures and hormonal profile of PCOS group (cont.)	158
	16.c: Biochemical parameters and $AT_1R/A1166C$ variants of the	159
	PCOS group	
	16.d: Biochemical parameters and $AT_1R/A1166C$ variants of	160
	the PCOS group (cont.)	

ACKNOWLEDGEMENTS

- First and foremost, I thank **ALLAH**, Who, without **HIS** help,this work would never be accomplished and may this work add to our good deeds to gain **HIS** kind mercifulness and forgiveness.
- No words can repay or express my thanks and gratitude to DR. HALA OSMAN EL-MESALLAMY, Professor of Biochemistry, Vice Dean for Graduate Studies and Research, Faculty of Pharmacy, Ain Shams University, for her generous supervision, keen interest and precious time she offered methroughout this study. I really consider myself fortunate that I worked under her generous supervision.
- ➤ I would like also to express my gratefulness and appreciation for DR. TAMER AHMED EL-REFAIE, Lecturer of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, for his invaluable efforts, continuous support and kind guidance throughout this work. I hope him every success in his life and work.
- ➤ I am greatly thankful to all members of Ain Shams University Maternity Hospital, for their friendly cooperation. My thanksalso extendto all staff members of Biochemistry Department, Faculty of Pharmacy, Ain Shams University, who supported and helped me to complete this work.
- Never to be forgotten or repaid back; the priceless help, support and understanding of my FAMILY during the tedious period of this work.

Rania Shafik Salah El-Din

1. Introduction and Aim of The Work

Polycystic ovary syndrome (PCOS) is the most frequent feminine endocrinopathy affecting up to 10 % of reproductively aged women (Fauser et al., 2012). The syndrome is recognized as a heterogeneous constellation of clinical and/or biochemical features including; androgen excess, ovulatory dysfunction and polycystic ovaries (Goodarzi et al., 2011). Despite speculations regarding the underlying pathogenetic mechanism, PCOS is currently accepted to be multifactorial in origin, where environmental factors are acting in a genetic background, resulting in a broad spectrum of reproductive and metabolic defects as well (Allahbadiaa and Merchantb, 2011).

Two-thirds of women with PCOS experience metabolic anomalies, chiefly, insulin resistance (IR) and compensatory hyperinsulinemia (*DeUgarte et al.*, 2005). These anomalies, in turn, not only aggravate hyperandrogenism and chronic anovulation encountered in PCOS, but also put those affected women at substantial risk of developing glucose intolerance (*Salley et al.*, 2007), type 2 diabetes mellitus (T2DM) (*Galazis et al.*, 2011) and eventually cardiovascular disease (CVD) in later years (*Schmidt et al.*, 2011).

Insulin resistance is increasingly recognized as a chronic, low-grade, inflammatory state and several mechanisms had been proposed to explain their inter-relation. These include enhanced expression of high sensitivity C-reactive protein (hs-CRP) that may occur by counteracting the physiologic effect of insulin on hepatic acute phase protein synthesis as a result of decreased insulin sensitivity (*Haffner*, 2003; *González*, 2012).

Furthermore, the cluster of differentiation 40 (CD40)/CD40 ligand (CD40L) signaling pathway, consisting of a membrane receptor CD40 and

its ligand, have been implicated in the crosstalk between leukocytes and adipocytes, providing another link between inflammation and IR (*Poggi et al.*, 2009). The CD40L is cleaved and circulates as soluble CD40L (sCD40L), an inflammatory marker whose levels as well as those of hs-CRP have been reported to be elevated among PCOS women, a finding suggestive of the association of these inflammatory factors with the pathogenesis of the syndrome (*Oktem et al.*, 2009; *Escobar-Morreale et al.*, 2011).

In addition to a well-documented role in regulating blood pressure (BP) and cardiovascular physiology (Yang et al., 2011), there is ample evidence implicating the renin-angiotensin system (RAS) in ovulation, steroidogenesis, as well as in the formation of corpus luteum through complex interactions with other systems (Gonçalves et al., 2012). Interestingly, this system has also been reported to play a central role in the regulation of insulin signaling in the vasculature and thus in the modulation of insulin sensitivity (Kalupahana and Moustaid-Moussa, 2012). Due to these roles, the RAS could be considered a relevant target for research in reproductive endocrinology, including in PCOS research.

Angiotensin II (Ang II), the effector substance of the RAS, interacts with 2 distinct subtypes of receptors. Among these 2 subtypes, the predominant molecular effects of Ang II are mediated via the Ang II type 1 receptor (AT₁R) subtype (*Fyhrquist and Saijionmaa*, 2008). A single nucleotide polymorphism (SNP) in the 3' untranslated region (UTR) of the AT_1R gene, which consists of an A to C nucleotide transversion at position 1166 ($AT_1R/A1166C$), has been the most extensively studied polymorphism of this gene (Abboud et al., 2010; Zhang et al., 2011).

Although sited in the UTR, it has been suggested that this polymorphism might alter IR by enhancing the responsiveness to Ang II