

" Effect of processing parameters on the quality of hot dip galvanizing of cold rolled steel"

Thesis

"Submitted for the Degree of Master of Science as a Partial Fulfillment of the Requirements of the Master of Science in Physics"

Submitted to

Physics Department, Faculty of Science
Ain Shams University

By

Mustafa Ahmed Ebrahim Shehata

B.Sc., Material Physics, Ain Shams University, 2006

Supervisors

Prof. Dr. Sayed Sabet Abd El Rehim

Professor of Physical Chemistry Chemistry Department Faculty of Science Ain Shams University

Prof. Dr. Zeinab Abd El Hamid Abd El Aziz

Head of Corrosion Control and Surface protection lab. Central Metallurgical Research and Development Institute (CMRDI)

Prof. Dr. Ali Abd El Rahman Ahmed Abou Shama

Professor of Structure of Polycrystalline and Amorphous Materials Physics Department Faculty of Science Ain Shams University

2016

Acknowledgements

Above all, praise to ALLAH, the lord of the world, by whose grace this work has been completed and never leaving me during this stage.

Great thanks to ALLAH for setting my work under supervision of **Prof. Dr. Zeinab Abd El-Hamid** (Head of corrosion control and suface protection laboratory, viec of metal technology department, Central of metallurgical research & devlopment inisitute.), she was always help, encouraging, and teaching me key issues of doing a successful research. Really, I would like to thank her for her warm heart, her advice and valuable suggestions especially during writing my thesis to this form. Most important acknowledgment goes to her; she often endures difficulties to devote her time for my research problems.

No words could cover my thanks and feeling towards my dissertation advisor **Prof. Dr.**Sayed Sabet (Professor of physical chemistry, Chemistry department, Ain Shams University) for his profound discussions throughout all of my research.

The Deepest gratitude and appreciation should go to **Prof. Dr. Ali Abou Shama** (Professor of structure of polycrystalline and amorphous materials), Physics Department, Faculty of Science, in Shams University) for his profound discussions throughout my research, I consider his post graduate solid state courses is the reason why i like it.

I express my deep thanks to all of my lab partners at CMRDI, Mr.Yahia, and Mona Hassan.

Great thanks must be given to my dear parents, my dear and helpful wife whose are nearly everything in my life. Deep thanks to, dear brothers, and finally, to the apple of my eye: my lovely son, for their supports and kind wishes.

For all of my friends for their friendship which will always be one of the best memories in my life.

Mustafa Ebrahim

Supervisors

Signature

Effect of processing parameters on the quality of hot dip galvanizing of cold rolled steel

Thesis

In Partial Fulfillment of the Requirements for the Degree of Master of Science in Physics

A Thesis Submitted By

Mustafa Ahmed Ebrahim Shehata

B.Sc., Material Physics, Ain Shams University, 2006

<u> </u>	<u></u>
- Prof. Dr. Sayed Sabet Abd El Rehim Professor of Physical Chemistry, Chemistry Department	•••••
Faculty of Science, Ain Shams University.	
- Prof. Dr. Zeinab Abd El Hamid Abd El Aziz Head of Corrosion Control and Surface Protection Lab., Control Matallymical Research and Development Institute	(CMDDI)
 Central Metallurgical Research and Development Institute Prof. Dr. Ali Abd El Rahman Ahmed Abou Shama Professor of Structure of Polycrystalline and Amorphous 	•••••
Physics Department, Faculty of Science- Ain Shams Univ	

Effect of processing parameters on the quality of hot dip galvanizing of cold rolled steel

A Thesis Submitted By

Mustafa Ahmed Ebrahim Shehata

B.Sc., Material Physics, Ain Shams University, 2006

Supervising committee

1- Prof. Dr. Sayed Sabet Abd El Rehim

Chemistry Department, Faculty of Science, Ain Shams University.

2- Prof. Dr. Zeinab Abd El Hamid Abd El Aziz

Central Metallurgical Research and Development Institute (CMRDI).

3- Prof. Dr. Ali Abd El Rahman Ahmed Abou Shama

Physics Department, Faculty of Science- Ain Shams University

Examining committee

1- Prof. Dr. Zeinab Abd El Hamid Abd El Aziz

Central Metallurgical Research and Development Institute (CMRDI).

2- Prof. Dr. Ahmed Gamal El Din Mostafa

Physics Department, Faculty of Science, Al Azhar University.

3- Prof. Dr. Hanaa Barakat Hassan

Chemistry Department, Faculty of Science, Cairo University.

Date of research: / /	
Seal of approval:	
Thesis has been approved on:	/ / 2016
Faculty council approval: /	/ 2016
University council approval:	/ / 2016

Title: Effect of processing parameters on the

quality of hot dip galvanizing of cold

rolled steel

Name: Mustafa Ahmed Ebrahim Shehata

Degree: Master of Science (physics).

Department: Material science

Faculty: Science

University: Ain Shams University

Graduation 2006

Date:

Registration 2012

Date:

Award Date:

To my Dear Parents & my Wife

Contents

	List of Figures	IV
	List of Tables	Х
	Goals and scope of the work	XI
	Abstract	1
	Chapter one	
	Introduction and literature survey	
1.1	Introduction	3
1.2	Galvanizing processes	4
1.2.1	Hot dip galvanizing process	5
1.2.2	Metallurgy of galvanizing	10
1.3	Factors affecting on the hot dip galvanizing process	21
1.3.1	Chemical composition of steel	21
1.3.2	Effect of Si in Steel on Hot-Dip Galvanizing	24
1.3.3	Effect of adding alloying elements to zinc bath	25
1.4	Properties of hot dip galvanizing layer	28
1.5	Electroplating galvanizing process	30
1.6	Plasma spray galvanizing process	35
1.7	Characterization of galvanized layer	35
1.8	Application of Hot Dip galvanized products	37
	Chapter two	
	Experimental	
2.1	Used materials	40
2.2	Steel sheet Preparation (Pre-treatment)	40
2.2.1	Mechanical Pre-treatment	40
2.2.2	Chemical Pre-treatment	40
2.3	Surface Analysis Techniques	43
2.3.1	Field emission-scanning electron microscope (FE-SEM)	43
2.3.2	Energy-dispersive X-ray spectroscopy (EDS, EDX)	44
2.4	Coating Thickness Test	45
2.5	The Vickers Micro hardness of the Galvanized Samples	46
2.6	X-ray diffraction	47

Contents

2.7	Corrosion Test	48
2.7.1	The Potentiodynamic Polarization Test	48
2.7.2	Salt Spray Test	50
	Chapter three	
	Results and discussion	
3.1	Effect of changing of immersion time	52
3.1.1	Measurement of corrosion behaviors	54
	a) Potentiodynamic polarization analysis	55
	b) EIS measurement	58
	c) Salt spray test	62
3.1.2	Measurement of hardness	64
3.2	Effect of immersion temperature	65
3.2.1	Measurement of corrosion behaviors	68
	a) Potentiodynamic polarization analysis	68
	b) EIS measurement	69
	c) Salt spray test	72
3.2.2	Measurement of hardness	75
3.3	Effect of additives on hot dip galvanizing bath	76
3.3.1	Effect of aluminum concentration	76
3. 3. 1.1	Measurement of corrosion behaviors	84
	a) Potentiodynamic polarization analysis	84
	b) EIS measurement	86
	c) Salt spray test	89
3.3.2	Effect of magnesium concentration	92
3.3.2.1	Measurement of corrosion behaviors	98
	a) Potentiodynamic polarization analysis	98
	b) EIS measurement	100
	c) Salt spray test	103
3.3.3	Effect of tin (Sn) concentration	105
3.3.3.1	Measurement of Corrosion behavior	112
	a) Potentiodynamic polarization analysis	112

Contents	
Componers	

	b) EIS measurement	115
	c) Salt spray test	122
3.3.4	Effect of substrate composition	124
	Measurement of corrosion behaviors	133
3.3.4.1		133
	a) Potentiodynamic polarization analysis	
	b) EIS measurement	135
	Chapter four	
	Summary and Conclusion	
	Summary	139
	Conclusion	142
	References	145
	List of Publications	143
	Arabic summary	
	Arabic Conclusions	
	Arabic Acknowledgement	

Figure No.	Title	Page No.
1-1	Microstructure of alloyed layers formed in zinc bath at 450 °C.	11
1-2	Binary Fe-Zn phase diagram	12
1-3	Binary Al-Zn phase diagram.	13
1-4	Ternary Fe-Al-Si at 600 °C.	13
1-5	Ternary Fe-Al-Zn at 450 °C.	14
1-6	Zn corner of the ternary Fe-Al-Zn at 450 °C.	15
1-7	Variation of Al concentration at the iron surface in the coarse of the reaction.	15
1-8	Schematic of the Fe-Zn phase formation at 0.2 wt.% of Al-Zn galvanizing bath . the development occures according the increase of time.	18
1-9	Schematic of diffusion paths of Fe-Zn alloy layer formed in 0.2 wt. % Al-Zn in the galvanizing bath.	20
1-10	Effect of silicon in steel on the coating thickness of the resulting zinc coating.	25
2-1	Image of Field emission-scanning electron microscope	44
2-2	Thickness gauge 6000-N4.	46
2-3	Tukon Series B200 microhardness tester.	47
2-4	Three-electrode electrochemical cell.	49
2-5	Salt spray cabin.	50
3-1	Microstructure for coated steel at different dipping time on the, a) 5 sec., b) 40 sec and c) 50 sec. at operating temperature 460 0 C.	54

3-2	Coating thickness vs. different dipping time at 460 °C.	54
3-3	Potentiodynamic polarization curves obtained from coated and uncoated steel at different time of immersion and 460 0 C in 3.5% NaCl medium with respect to SCE.	57
3-4	(a) Nyquist plot, (b) Bode plot & (c) Phase angle plot for uncoated and coated steel at different time of immersion and 460 °C in 3.5% NaCl solution With respect to SCE.	61
3-5	Electrical equivalent circuit used to simulate the recorded EIS data for uncoated and coated steel at different time of immersion and 460 0 C.	62
3-6	Galvanized samples at different time of immersion and 460 0 C before and after sprayed in 3.5 % NaCl for 600 hrs.	63
3-7	Microstructure for coated steel at different operating temperature and 40 sec., where, a) at 460 °C, b) at 470 °C and c) at 480 °C.	67
3-8	Relation between coating thickness vs. different operating temperature and 40 sec.	67
3-9	Potentiodynamic polarization curves obtained from uncoated and coated steel with different operating temperature and 40 sec. in 3.5% NaCl medium with respect to SCE.	69
3-10	(a) Nyquist plot, (b) Bode plot and (c) Phase angle plot for uncoated and coated steel with different operating temperatures and 40 sec. in 3.5% NaCl solution with respect to SCE.	71
3-11	Electrical equivalent circuit used to simulate the recorded EIS data for uncoated and coated steel with different operating temperature and 40 sec.	72
3-12	Galvanized samples before and after sprayed with 3.5 % NaCl for 600 hrs. for coated steel at different operating temperature and 40 sec.	73
3-13	XRD spectra of corrosion products for 460 $^{\circ}$ C & 40 sec. obtained after immersion in 3.5 % NaCl solution	74
3-14	Microstructure for coated steel at different Al content obtained	78

	at 460 °C, and 40 sec., where, a) 0 wt. %Al, b) 0.05 wt. % Al, c) 0.2 wt. % Al and d) 0.3 wt. % Al.	
3-15	Average coating thickness versus Al wt. % operated at 460 0 C & 40 sec.	80
3-16	Quantitative results for alloyed layer by using EDX analysis of 0.05 wt. % Al operated at 460 0 C and 40 sec.	82
3-17	Quantitative results for alloyed layer by using EDX analysis of 0.3 wt.% Al operated at 460 °C and 40 sec.	83
3-18	Potentiodynamic polarization curves obtained from uncoated and coated steel with different Al % at 460 0 C & 40 sec. in 3.5% NaCl media with respect to SCE.	85
3-19	(a) Nyquist plot for Zn coatings (b) Bode plot & (c) Phase angle plot from uncoated and coated steel with different Al % at 460 0 C & 40 sec. in 3.5% NaCl solution with respect to SCE.	88
3-20	Electrical equivalent circuit used to simulate the recorded EIS data for uncoated and coated steel with different Al % at 460 0 C & 40 sec.	89
3-21	Galvanized samples of different Al % operated at 460 0 C & 40 sec. before and after sprayed with 3.5 % NaCl for 600 hrs.	90
3-22	XRD spectra of corrosion products of 0.2 wt. % Al operated at 460 0 C and 40 sec. obtained after immersion in 3.5 % NaCl.	91
3-23	Microstructure for coated steel at different Mg wt. % operated at 460^{0} C , 40 sec., 0.2 wt.% Al. where; a) 0 wt. % Mg, b) 0.2 wt. % Mg, c) 0.3 wt. % Mg, and d) 0.5 wt. % Mg.	93
3-24	Average coating thickness versus Mg wt. % operated at 460 0 C for 40 sec. and 0.2 wt. % Al	94
3-25	Quantitative results for each layer of hot dip galvanized in molten zinc bath containing 0.3 wt. % Mg operated at 460° C and 40 sec. and 0.2 wt. % Al.	96
3-26	Quantitative results for each layer of hot dip galvanized in molten zinc bath containing 0.5 wt. % Mg operated at 460 0 C	97

	and 40 sec. and 0.2 wt. % Al.	
3-27	Potentiodynamic polarization curves obtained from uncoated and coated steel with different Mg wt. % operated at 460 0 C and 40 sec. and 0.2 wt. % Al in 3.5% NaCl media with respect to SCE.	99
3-28	(a) NY Quist plot, (b) Bod plot & (c) Phase angle plot for uncoated and coated steel with different Mg wt. % operated at 460 °C and 40 sec. and 0.2 % Al in 3.5% NaCl solution with respect to SCE.	102
3-29	Electrical equivalent circuit used to simulate the recorded EIS data for uncoated and coated steel with different Mg wt. % operated at 460 °C and 40 sec. and 0.2 % Al.	103
3-30	Galvanized samples coated steel with different Mg wt. % operated at 460°C and 40 sec. and 0.2 % Al before and after sprayed with 3.5 % NaCl for 600 hrs.	104
3-31	XRD spectra of corrosion products of Mg = 0.3 wt. % & Mg = 0.5 wt. % operated at 460° C and 40 sec. and 0.2 % Al obtained after immersion in 3.5 % NaCl.	105
3-32	Effect of Sn concentration on the all coating thickness of galvanized layer formed at 460 ° C for 40 sec immersion time.	107
3-33	Cross section of galvanized layer formed from molten Zn bath containing different concentration Sn operated at 460 °C for 40 sec, where a) pure Zinc, b) Zn- 0.1 wt.% Sn, c) Zn-0.3 wt. % Sn, d) Zn-0.5 wt. %.	108
3-34	EDX analysis of galvanized layer formed from molten Zn containing low and high Sn wt. %, a) 0.1 and b) 0.4	111
3-35	a) Potentiodynamic polarization curves obtained to study the effect of Sn wt. % b) compare between Potentiodynamic polarization curves for steel sheet with traditional Zn coatings, galvanizing steel with Zn-0.2 Al alloy and galvanizing steel with Zn-0.1 Sn alloy at 460 °C, for 40 sec. immersion time in 3.5% NaCl media.	114

3-36	Electrochemical Impedance NY Quist and Bode obtained to study the effect of Sn wt. % for galvanizing steel operated at 460 °C, for 40s immersion time in 3.5% NaCl.	117
3-37	Electrochemical Impedance Nyquist and Bode obtained to compare between the behavior of traditional galvanized steel, galvanized steel with Zn-0.2 Al alloy, and galvanized steel with Zn-0.1 Sn alloy operated at 460 °C, for 40s immersion time in 3.5% NaCl.	118
3-38	Electrical equivalent circuit used to simulate the recorded EIS data where a) fitting of two time constant and b) fitting of one time constant.	119
3-39	XRD analysis patterns of Zn-Sn galvanized steel with different Sn wt. % after 600 hrs. Salt spray test, where a) with molten bath containing 0.1 Sn wt. %, and b) Zn.	123
3-40	Effect of silicon content in the steel substrate on the coating thickness of the galvanized layer operated at 460 °C, for 40 sec.	127
3-41	Microstructure of the galvanized steel containing different Si contents operated at 460 °C temperature and 40 sec., where (a) 0.08 wt. %Si (b) 0.56 wt.%Si and (c) 1.46 wt.%Si.	129
3-42	High magnification of the galvanized steel containing 1.46 wt. %Si	129
3-43	Quantitative results for alloyed layer by using EDX analysis of 0.56 wt. % Si operated at 460 0 C and 40 sec	131
3-44	Quantitative results for alloyed layer by using EDX analysis of 1.46 wt. % Si operated at 460 0 C and 40 sec	133
3-45	Potentiodynamic polarization curves of the galvanized steel having different Si wt. % operated at 460 0 C & 40 sec. in 3.5% NaCl solution	134
3-46	(a) Nyquist plot for Zn coatings (b) Bode plot of the galvanized steel with different Si % at 460 0 C & 40 sec. in 3.5% NaCl solution.	137

0:1	((:
List	of figures
	ט ע ע

3-47	Electrical equivalent circuit used to simulate the recorded EIS data where a) fitting of two time constant and b) fitting of one	138
	time constant.	