Detection of NKX2.5 gene mutations in patients with isolated atrial septal defect

A thesis

Submitted for partial fulfillment of Master degree in Clinical & chemical Pathology

By Ghada Mohamed Shehata Nor Eldeen

Research assistant
Molecular Genetics and Enzymology Department
National Research Center

Under the supervision of

Prof.Dr/ Hoda Ali Sadek
Prof. of Clinical& chemical Pathology
Faculty of Medicine
Cairo University

Prof.Dr Ibtessam M.Ramzy
Prof.of Human Genetics
Molecular Genetics and
Enzymology Dept.
National Research Center

Dr/Ayatallah Amir Nasef
Lecturer of Clinical& chemical Pathology
Faculty of Medicine

Cairo University

Clinical & chemical Pathology Department
Faculty of medicine
Cairo University
2007

ACKNOWLEDGEMENT

My grateful acknowledge for *Prof. Dr. Hoda Ali Sadek*, professor of clinical pathology, Cairo University, for her kind supervision, precious guidance, helpful instructions, and powerful support.

I would like to express my great thanks and deepest appreciation to *Prof. Dr. Ibtessam M. Ramzy Hussein*, professor of Human genetics and head of the molecular genetics and enzymology department, National Research Centre. Suggesting the point of this work for her valuable guidance, support, invaluable advices, and great help under her continuous supervision to finish this work.

My profound and sincere thanks to *Dr. Ayatallah Amir Nasef*, Lecturer of clinical pathology, Cairo University, for her great support, abounding patience, efforts, and the time she spent in reviewing the thesis.

I would like to express my great thanks to *Prof. Dr Mona El Ruby* professor of clinical and cytogenetics and head of clinical genetics department, National Research Centre, for her help in diagnosing and supplying the clinical data and reviewing the thesis.

And also I would like to express my great thanks to *Dr. Mai Shreef*, Lecturer of clinical pathology, Cairo University, for her great support, efforts and her help in collecting the samples and interpreting clinical data of the patients.

I would like to thank all the staff members of molecular genetic and enzymology department, for their real cooperation.

Finally, I like to thank the patients and their family members who participated in this work.

Abstract

Detection of NKX2.5 gene mutations in patients with isolated atrial septal defect

Ghada Mohamed shehata

The objective of this study is to screen for mutations in the NKX2.5 gene in patients affected by isolated non-syndromic atrial septal defects (ASD) in order to assess the role of NKX2.5 mutations in causing these defects.

The study included 25 unrelated patients with isolated non-syndromic ASD. Control group was 10 normal persons who had no personal or family history of any congenital heart diseases. Screening for hot spots for mutations was done using PCR-SSCP (Single stranded conformation polymorphism) and restriction enzyme assay for the analysis of two exons in four fragments (1A, 1B, 2A& 2B). DNA sequencing analysis was done for samples with abnormal electrophoretic mobility in SSCP.

Mutation analysis using restriction enzyme assay identified mutation in 3 out of the 25 cases (12%) (Thr178 Met, Asn188 Lys) in the homeodomain . And polymorphism (silent mutation) in 2 of the 25 cases in exon 1(8%), by DNA sequencing analysis of cases having abnormal migration pattern by SSCP method. It can also be concluded from the current study that, SSCP is not a sensitive method for screening of mutations and direct DNA sequencing and / or restriction enzyme analysis should be used for detection of mutations. Also screening of mutations in NKX2.5 gene in familial cases of ASD is needed to identify a possible diagnostic tool for carrier detection and prenatal diagnosis of CHDs

Key words

-Atrial septal defect - NKX2.5 -Point mutation -Transcription factors

Contents

Abstract	Page
Asknowledgement	VI
Acknowledgement	VII
List of AbbreviationsList of Figures	X
List of Tables	XI
Introduction and aim of the work	1
21001 Gametron with an of the World	1
.Review of Literature	
1 Embryology of the heart and normal septu	ım
formation	
- Steps of cardiac development	3
-Formation and position of the heart tube	5
-Formation of the primitive heart chambers	7
-Formation of cardiac septa	8
-Development of the atria -Septum formation in common atrium	10
-Further differentiation of atria	10 12
2-Cardiac transcription factors	
-Cardiac Development and Transcription Factors	13
-Gene expression	14
- The Main Transcription Factors Involved in	
Cardiac Development	18
1-NKX . transcription factor	18
2- GATA transcription factors	24
3-Myocyte enhancer factor 2 (MEF) transcription factors	24

4- HAND transcription factors	
5- Iroquois homeobox gene 4 (Irx4) transcription factors	
6- Tbx transcription factor	26
7- Pitx transcription factor	28
8 -HAY transcription factor	28
3 – Congenital Heart Disease	
-Definition	29
-Incidence	29
- A etiology	30
A)Genetic basis	
I. Chromosome abnormalities of CHDs	
II-Single gene defects	33
B) Environmental teratogens	
C)Multifactorial disorders	37
-Types of Congenital Heart Diseases	37
-Diagnosis	
-Management	
-Genetic Counseling	
-Prevention	41
Atrial Septal Defects (ASD)	42
-Incidence	42
-Description	42
-Classification	
-Genetic basis	

- Diagnosis	45
-Treatment	
.Material & method	
-Subjects	46
-Methods	46
I-Clinical examination	46
II -Radiological studies	
III-Molecular studies	47
A-DNA extraction	47
B-Amplification of genomic DNA by PCR	49
C-Single Stranded Conformational Polymorphism (SSCP)	52
D -DNA Sequencing	54
E-Restriction enzyme (restriction endonucleases)	55
I -HSP92II	56
II- MSP1	58
-Statistical analysis	
. Results	
-Clinical data	60
-Molecular data	64
1-Amplification of Nkx2.5 gene	64
2-Results of SSCP	67
3-Results of mutation detection of Nkx2.5 gene	71
A -DNA sequencing	71

B -Results of restriction enzyme assay	72
.Discussion	83
. Summary	92
. References	94
. Arabic summary	111

List of Abbreviations

ACE : Angiotensin converting enzyme

ANP : Atrial natriuretic peptide

ASD : Atrial septal defect AV : atrioventricular C Tr c : Cardiac troponin c

CHD : Congenital heart diseaseCoA : Coarcitation of aorta

CSX : Cardiac – specific homeobox

CTAFS : Conotruncal anomaly face syndrome

DGS
 DiGeorge Syndrome
 DNA
 Deoxyribonucleic acid
 ECG
 Electrocardiogram
 HOmeodomain

Irx4 : Iroquois homeobox gene 4

LV : Left ventricle

MEF2 : Myocyte enhancer factor 2
 MRI : Magnetic resonance imaging
 mRNA : Messenger Ribonucleic Acid
 NIH : National Institutes of Health

NK2-SD : NK2 specific domain

NO. : Number

OD : Optical density

PCR : Polymerase chain reaction
PDA : Patent ductus arteriosus
PHT : pulmonary hypertension

RNA : Ribonucleic Acid

RNA pol II : Ribonucleic Acid polymerase II

rpm : Revolution per minute

RV : Right ventricleSD : Standard deviationSRF : Serum response factor

SSCP : Single stranded conformation polymorphism

TAE : Tris acetate-EDTA
Taq : Thermus aquaticus

TBE : Tris borate-EDTA

TBX5 : T box 5

TCT : Thrombin-clotting time

TE : Tris-EDTA

TGA : Transposition of great arteries

TOF : Tetrology of fallot

Tris : Tris (hydroxymethyl) aminomethane

UV : Ultraviolet

VCFS : Velo cardio Facial syndromeVSD : Ventricular septal defect

-MHC : Alfa- myocin heavy chain

List of Figures

		Page
Fig. (1)	Diagram of development of endocardium, myocardium, and epicardium from the mesodermal germ layer.	4
Fig. (2)	Angiogenic cell clusters.	4
Fig. (3)	Formation of heart tube.	6
Fig. (4)	Formation of the heart loop.	7
Fig. (5)	Septum formation by two actively growing ridges which approach each other until they fuse.	9
Fig. (6)	Schematic representation of the atrial septa at various stages of development.	11
Fig. (7)	Coronal sections through the heart to show the development of the smooth-walled portions of the right and left atrium.	12
Fig.(8)	Schematic representation of cardiac development	13
Fig. (9)	Genetic blueprint for heart development.	15
Fig. (10)	Bending of DNA enables transcription factors, activators, bound to enhancers to contact the protein initiation complex at the promoter.	16
Fig. (11)	Control of gene expression.	17
Fig. (12)	Map of chromosome 5.	20
Fig. (13)	Diagram of the <i>NKX2.5</i> gene, depicting the locations of new and previously reported mutations.	21
_	Working model for activation of Nkx-2.5 by interaction with GATA-4.	23

Fig. (15)	Atrial septal defect.	43
Fig. (16)	Percentage of positive consanguinity.	61
Fig. (17)	Relation between types of ASD.	63
Fig. (18)	Percentage of pulmonary hypertension.	63
Fig. (19)	PCR amplified products of exon 1A.	64
•	PCR amplified products of exon 1B. PCR amplified products of exon 2A.	65 65
Fig.(22)	PCR amplified products of exon 2B.	66
Fig.(23)	SSCP analysis of PCR amplified products of fragment 1A.	67
Fig.(24)	SSCP analysis of PCR amplified products of fragment 1B.	67
Fig.(25)	SSCP analysis of PCR amplified products of fragment 2A.	68
FIG.(26)	SSCP analysis of PCR amplified products of fragment 2A.	68
Fig.(27)	SSCP analysis of PCR amplified products of fragment 2A.	69
Fig.(28)	SSCP analysis of PCR amplified products of fragment 2B.	69
Fig.(29)	Percentage of abnormal migration patterns in the 4 fragments of NKX2.5 gene	70
FIG.(30)	Partial sequence of 1A fragment showing overlapping of A & G bases in codon 21 indicating alternation between normal & polymorphic sequence.	71

Fig.(31)	Agarose gel electrophoresis for restriction enzyme assay of <i>MSP1</i> showing normal digestion of 2A fragment to lengths 178, 165 and 125 base pairs.	73
Fig.(32)	Agarose gel electrophoresis for restriction enzyme assay of <i>MSP1</i> showing in lane (1) abnormal digestion of 2A fragment to 343 and 125 base pairs fragments(case no. 25). And normal digestion at lanes 2 & 3 to lengths 178, 165 and 125 base pairs.	74
Fig.(33)	Agarose gel electrophoresis showing: lane (1) amplified PCR product (469bps) before digestion. lanes (2-5) digested products using <i>HSP92II</i> showing bands at 411 & 56 base pairs.	74
Fig.(34)	Agarose gel electrophoresis for restriction enzyme assay of <i>HSP92II</i> showing in lane(1) the 2A fragment length (non digested) of 469 base pairs,1n lane 4 normal digestion of <i>HSP92II</i> at 411&56 base pairs, and in lane(2-3) digested products using <i>HSP92II</i> showing bands at 256,155&56 base pairs(cases no. 20&24).	75

List of Tables

		Page
Table (1)	Staging of heart tube formation.	5
Table (2)	Point mutations reported in NKX2.5 gene causing CHDs.	22
Table (3)	Frequency of congenital heart diseases in different parts of the world based on available literature.	30
Table (4)	Chromosomal abnormalities with congenital heart defects.	33
Table (5)	Association between selected risk factors and congenital heart defects.	36
Table (6)	Prevalence of major types of congenital heart diseases per1000.	37
Table (7)	The Sequence of PCR primers.	55
Table (8)	Percentage ratio of pregnancy history.	61
Table (9)	Maternal medical history.	62
Table (10)	Types of ASD according to the size.	62
Table (11)	Length of NKX2.5 gene fragments	64
Table (12)	Percentage ratio of abnormal migration pattern of the 4 fragments of the NKX2.5 gene.	70
Table (13)	Fragment lengths of MSPI &HSP92II restriction enzyme.	73
Table (14)	Summary for screening methods of NKX2.5 gene mutations.	76
Table(15)	Summary of the clinical data of the patients.	80

Introduction

Cardiac development is a complex biological process, in which several transcription factors have been implicated (*Fishman,et al.,1997*), and the susceptibility of the heart to developmental anomalies reflects this complexity (*Schwartz, et al., 1999*). The atrial septum is one of the most sensitive cardiac structures to genetic factors. Several lines of evidence have highlighted a role of NKX2.5 transcription factor in septogenesis process (*Vaughan, and Basson, 2001*).

Atrial septal defect (ASD) is one of the most common heart defects, affecting 1 in 1000 live births and, accounting for about 10% of congenital heart defects (*Hoffmann et al.*, 2002).

The homeobox transcription factor NKX2.5 (also known as CSX: cardiac-specific homeobox) is essential for the later stages of heart development and maturation, it is expressed in the early cardiac mesoderm and in heart muscle lineage throughout life . The NKX2.5 gene studies revealed that it has the capabilities of DNA binding, transcriptional activation, protein-protein interactions, and regulation of other transcription factors (*Tanaka*, *et al.*, *1999*). The homeobox transcription factor NKX2.5 contains 2 exons that encode 324 amino acids (*Fishman*, *et al.*, *1997*) and it has been mapped to chromosome 5q34 (*Shiojima*, *et al.*, *1995*). Mutations in NKX2.5, a member of the NKX2 class of homeobox genes, have been described in autosomal dominant ASD with progressive atrioventricular (AV) block, and in 1-4 % of sporadic ASD patients (*McElhinney*, *et al.*, *2003*). Most of these mutations occur within homeodomain, a critical protein domain that interacts specifically with DNA, and are associated with conduction anomalies. Numerous heterozygous mutations of NKX2.5 were

identified in patients with congenital heart disease. (*Benson*, *et al.*, 1999). Atrioventricular conduction disturbance (AV) and atrial septal defect (ASD) were the most common phenotypes (*Ikeda*, *et al.*, 2002).

The molecular genetic studies of NKX2.5 gene is based on using primers designed to amplify both exons and intervening intron by using PCR technique. A number of screening methods for detection of sites of mutations in NKX2.5 were used, such as SSCP (single stranded conformational polymorphism) , restriction enzyme assay , and DNA sequencing.

Aim of work:

- -The goal of the present study is to detect mutations in the NKX2.5 gene in patients affected by isolated non-syndromic ASD in order to assess the role of NKX2.5 mutations causing these defects.
- Assess the effectiveness of PCR-SSCP method and restriction enzyme assay in detection of mutations causing atrial septal defect.