

RESPONSE OF STRUCTURES TO SMALL AND MEDIUM BLAST LOADS

By

Ahmed Mahmoud Khalil Ibrahem

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

RESPONSE OF STRUCTURES TO SMALL AND MEDIUM BLAST LOADS

By
Ahmed Mahmoud Khalil Ibrahem

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Structural Engineering

Under the Supervision of

Prof. Dr. Osman.M.Osman.Ramadan

Professor of Struc, Analysis and Mechanics Structural Engineering Department Faculty of Engineering, Cairo University

RESPONSE OF STRUCTURES TO SMALL AND MEDIUM BLAST LOADS

By Ahmed Mahmoud Khalil Ibrahem

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Structural Engineering

Approved by the Examining Committee

Prof. Dr. Osman M. Ramadan, Thesis Main Advisor

Prof. Dr. Atef S. Gandy, Internal Examiner

Prof. Dr. Gouda M. Ghanem., External Examiner

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016 Engineer's Name: Ahmed Mahmoud Khalil

Date of Birth: 23/01/1990 **Nationality:** Egyptian

E-mail: Ahmedkhalil 2011@ymail.com

Phone: 01004994954

Address: Ard El- Lawaa, Giza, Egypt

Registration Date: 30/09/2011
Awarding Date:/..........

Degree: Master of Science
Department: Structural engineering

Supervisors:

Prof. Osman.M.Osman.Ramadan

Examiners:

Porf. Osman.M.Ramadan (Thesis main advisor)
Prof. Atef.S.Gandy (Internal examiner)
Prof. Gouda.M.Ghanem (External examiner)

Title of Thesis:

RESPONSE OF STRUCTURES TO SMALL AND MEDIUM BLAST LOADS

Key Words:

Blast loads; Explosions; Barriers; Chambers; Concrete Nonlinearity

Summary:

Civil engineering structures are sometimes subjected to small and medium blast loads. This study investigates the effects of material nonlinearity, reinforcement ratio, and structure shape on the performance of chambers and barriers subjected to blast loads.

The results showed that the linear analysis of blast loads is more conservative than the nonlinear one as it produces higher stress values. However, linear deformations are less than their corresponding nonlinear ones. For explosions inside rooms, increasing the reinforcement ratio decreased the damage index, the stresses, and the deformations. For barriers, the use of small radius of curvature led to a decrease in damage index and critical stresses. Compared to rectangular rooms, circular rooms showed less damage index, smaller stress, and smaller deformations.

Acknowledgments

Thanks to ALLAH for his great mercy and support. I would like to express my deep sense of respect and gratitude towards my advisor Prof. Dr. Osman.M.Ramadan for his continuous support, advice, and guidance through out my work.

Special thanks and gratitude to Dr. Mohamed.G.El-sherbiny, lecturer at Future University, for his generous help during preparation of the numerical models using AUTODYN.

I would like to thank my parents and my brother, who have been the source of my strength and encouragement throughout this journey. I am thankful to all my friends for giving me help and support throughout my work, especially, my best friend Youssef Soliman.

Table of Contents

Acknow ledg	gments	
Table of Cor	ntents	II
List of Table	25	V
List of Figure	es	VII
Abstract		XXII
CHAPTER 1	IN TRO DUCTION	1
1.1.	Introduction	1
1.2.	Recent researches	2
1.3.	Aim of this research	3
1.4.	Outline of the thesis	3
CHAPTER 2	LITERATURE REVIEW	4
2.1.	Introduction	4
2.2.	BLAST LOADS	4
2.2.1.	Blast phenomena	4
2.2.2.	Explosive materials	5
2.3.	Blast Loading Categories	6
2.3.1.	Unconfined explosions	7
2.3.2.	Confined explosions	9
2.4.	Blast wave phenomena	10
CHAPTER 3	ANALYTICAL TECHNIQUE	11
3.1.	Introduction	11
3.2.	Explicit solution strategy	11
3.3.	Modeling technique	12
3.3.1.	Structured and unstructured parts	13
3.3.2.	Lagrange solver	14
3.3.3.	Euler solver	15
3.3.4.	Euler - Lagrange interaction	16
3.4.	Material models	17
3.4.1.	Equation of state	17
3.4.2.	Material strength model	17
3.4.3.	Material failure model	17
3.5.	Characteristics of proposed materials	18
3.5.1.	Concrete 35 MPa material (linear model)	18
3.5.2.	Air material	19
3.5.3.	TNT material	19
3.5.4.	Conc-35 MPa (nonlinear model)	20
3.5.5.	Steel 4340 (Reinforcement steel)	27
3.5.6.	Sand	27
3.6.	Model elements	28
3.6.1.	3D MM element	29
3.6.2.	Shell element	29
363	Roam alamant	30

CHAPTER 4	: NUMERICAL MODELS OF FLAT BARRIER	31
4.1.	Introduction	31
4.2.	Model I	31
4.2.1.	Model I properties	31
4.2.2.	Modal I results	35
4.2.3.	Discussion of results	
4.3.	Model II	40
4.3.1.	Model II Properties	41
4.3.2.	Model II results	
4.4.	Parametric Study	48
4.5.	Model III	50
4.5.1.	Model III Properties	
4.5.2.	Model III results	50
4.5.3.	Discussion of results	54
4.6.	Model IV	56
4.6.1.	Model IV Properties	56
4.6.2.	Model IV results	62
4.6.3.	Discussion of results	63
4.7.	Model V	63
4.7.1.	Model V Properties	64
4.7.2.	Model V results	66
4.7.3.	Discussion of results	68
4.8.	Model VI	68
4.8.1.	Model VI Properties	68
4.8.2.	Model VI results	69
4.8.3.	Discussion of results	71
CHAPTER 5	NUMERICAL MODELS OF CURVED BARRIER	72
5.1.	Introduction	
5.1. 5.2.	Model I	
5.2. 5.2.1.	Model I properties	
5.2.1.	Model I results	
5.2.2. 5.2.3.	Discussion of results	
5.3.	Model II	
5.3.1.	Model II properties	
5.3.2.	Model II results	
5.3.3.	Discussion of results	
5.3.3. 5.4.	Model III	
5.4.1.	Model III properties	
5.4.2.	Model III results	
5.4.2. 5.4.3.	Discussion of results	
5.4.5. 5.5.	Model IV	
5.5.1.	Model IV properties	
5.5.2.	Model IV results	
5.5.3.	Discussion of results	
5.6.	Model V	
5.6.1.	Model V properties	
5.6.2.	Model V results	
5.6.3.	Discussion of results	
5.0.5. 5.7.	Model VI	
5.7.1.	Model VI properties	
5.7.1. 5.7.2.	Model VI properties	
5.7.2. 5.7.3.	Discussion of results	
5.7.5.	2	

	5.8.	Model VII	105
	5.8.1.	Model VII properties	105
	5.8.2.	Model VII results	106
	5.8.3.	Discussion of results	112
	5.9.	Summary	112
		EFFECT OF BOUNDARY CONDITIONS ON STRUCTURES SUBJECTED TO BLAST	
••••	6.1.	Introduction	
	6.2.	Model I	
	6.2.1.	Model I properties	
	6.2.2.	Model I results	
	6.3.	Model II	
	6.3.1.	Model II properties	128
	6.3.2.	Model II results	128
	6.4.	Model III	134
	6.4.1.	Model III properties	134
	6.4.2.	Model III results	
	6.5.	Model IV	
	6.5.1.	Model IV properties	
	6.5.2.	Model IV results	
	6.6.	Model V	
	6.6.1.	Model V properties	
	6.6.2. 6.7.	Model V results	
	-	Discussion of results	
	CHAPTER 7	PARAMETRIC STUDY AND RESULTS DISCUSSION OF RC CHAMBER	
	7.1.	Introduction	
	7.2.	Model I	
	7.2.1.	Model properties	
	7.2.2.	Model I results	
	7.3.	Parametric Study	
	7.4.	Model II	
	7.4.1.	Model II properties	
	7.4.2. 7.4.3.	Model II results Discussion of results	
	7.4.3. 7.5.	Model III	
	7.5.1.	Model III properties	
	7.5.2.	Model III results	
	7.5.3.	Discussion of results	
	7.6.	Model IV	
	7.6.1.	Model IV properties	
	7.6.2.	Model IV results	
	CHAPTER 8	EXTENSIVE INVESTIGATION FOR THE EFFECT OF MATERIAL NONLINEARITY	198
	8.1.	Introduction	198
	8.2.	Effect of material nonlinearity	198
	8.2.1.	Barrier model	
	8.2.2.	Chamber model	
	8.3.	Effect of reinforcement ratio	
	8.3.1.	Barrier model	
	8.3.2.	Chamber model	
	8.4.	Effect of structure shape	
	8.4 1	Barrier model	216

8.4.2	2. Chamber model	219	
CHAPTER :	9 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDIES	224	
9.1.	Summary	224	
9.2.	Conclusions	224	
9.3.	Recommendations for Future Studies	225	

List of Tables

Table 1.1: Injury statistics from a small number of terrorists bombing up until 2000)1
Table 2.1: Specific energy of different explosives types and their conversion factor.	
Table 2.2: Blast loads categories.	
Table 3.1: Elastic constants.	
Table 4.1: Linear concrete model properties.	32
Table 4.2: Air properties.	
Table 4.3: Explosive material (TNT) properties.	
Table 4.4: Steel reinforcement properties.	
Table 4.5: Gauges locations in model (I).	
Table 4.6: CONC-35MPa Properties.	
Table 4.7: Summary of the parametric study incase of linear and nonlinear analysis	
due to the different explosive charges (1.63, 13, and 104.3kg) which are located at	
1.50m standoff distance from the center of the barrier.	48
Table 4.8: Sand properties.	
Table 4.9: Gauges locations of model (IV)	
Table 4.10: Gauges locations of model (V)	
Table 4.11: Comparison of maximum straining action for models (V&VI) due to 13	3kg
of TNT which is located at 1.50m standoff distance from center of the barrier	71
Table 5.1: Gauges locations in model (I).	73
Table 5.2: Results summary for the curved barriers and the flat barrier due to 13kg	of
TNT which is located at 1.50m standoff distance from center of the barrier	113
Table 6.1: Arrangement of supports in different models.	116
Table 6.2: Gauges locations in model (I).	118
Table 6.3: Summary of coupling forces due to 13kg of TNT which is located at the	
center of model (II) at height 1.5 from the base	129
Table 6.4: Summary of base reactions due to 13kg of TNT which is located at the	
center of model (II) at height 1.5 from the base	130
Table 6.5: Summary of displacements due to 13kg of TNT which is located at the	
center of model (II) at height 1.5 from the base	131
Table 6.6: Summary of coupling forces due to 13kg of TNT which is located at the	
center of model (III) at height 1.5 from the base	135
Table 6.7: Summary of displacements due to 13kg of TNT which is located at the	
center of model (III) at height 1.5 from the base	138
Table 6.8: Summary of coupling force due to 13kg of TNT which is located at the	
center of model (IV) at height 1.5 from the base	142
Table 6.9: Summary of displacements due to 13kg of TNT which is located at the	
center of model (IV) at height 1.5 from the base	
Table 6.10: Summary of coupling forces due to 13kg of TNT which is located at the	
center of model (V) at height 1.5 from the base.	149
Table 6.11: Summary of stress for models (I to V) due to 13kg of TNT which is	
located at center of the chamber at height 1.5 from the base	
Table 6.12: Summary of displacements for models (I to V) due to 13kg of TNT whi	
is located at center of the chamber at height 1.5 from the base	157

Table 7.1: Summary of coupling forces due to 13kg of TNT which is located at the
center of model (I) at height 1.5 from the base161
Table 7.2: Summary of parametric study incase of linear and nonlinear analysis due to
(1.63, 13.04, and 16.75 kg) of TNT which are located at the center of chamber at
height 1.50m from the base
Table 7.3: Summary of coupling forces due to 13kg of TNT which is located at the
center of model (II) at height 1.5 from the base175
Table 7.4: Summary of stress for model (I) in chapter 6 and model (II) in chapter 7
due to 13kg of TNT which is located at the center of chamber at height 1.5 from the
base
Table 7.5: Gauges Locations in model (III)
Table 7.6: Summary of stress of rectangle and circular chamber due to 13kg of TNT
which is located at the center of chamber at height 1.5 from the base
Table 7.7: Summary of displacement of rectangle and circular chamber due to 13kg of
TNT which is located at the center of chamber at height 1.5 from the base194

List of Figures

Figure 1.1: global statistics for explosions associated with terrorist attacks	2
Figure 2.1: Variation of blast pressure with distance.	
Figure 2.2: Blast loads categories.	
Figure 2.3: Free air burst environment.	
Figure 2.4: Pressure-time variation for free air burst	
Figure 2.5: Air burst with ground reflections.	
Figure 2.6: Surface burst.	
Figure 2.7: Fully vented (a), partially vented (b), and fully confined explosions (c)	
Figure 2.8: Free field pressure time variation.	
Figure 3.1: Explicit dynamic strategy.	
Figure 3.2: Example grid.	
Figure 3.3: Structured element.	
Figure 3.4: Example Lagrange grid.	
Figure 3.5: Example of normal mesh and (a) to (d) examples of problematic mesh	
distortion.	14
Figure 3.6: Stationary Euler Grid and materials flow Example	
Figure 3.7: Euler computation cycle.	
Figure 3.8: Euler-Lagrange coupling.	16
Figure 3.9: EOS for linear elastic material.	
Figure 3.10: Pressure as a function of density for the JWL EOS.	20
Figure 3.11: P-α model	22
Figure 3.12: RHT Representation of Compressive Meridian.	23
Figure 3.13: Third invariant dependence.	
Figure 3.14: Bilinear strain hardening function.	25
Figure 3.15: RHT elastic, fracture and residual failure surfaces	26
Figure 3.16: Shell element shapes.	29
Figure 3.17: 3D beam element.	30
Figure 4.1: Model (I) general view and gauges locations	31
Figure 4.2: Pressure at gauges 1 to 6forfirst 100ms due to 13kg of TNT which is	
located at 1.50m standoff distance from the center of model (I).	36
Figure 4.3: Pressure at gauges 1 to 6 for first 10ms due to 13kg of TNT which is	
located at 1.50m standoff distance from the center of model (I).	
Figure 4.4: Fyc due to 13kg of TNT which is located at 1.50m standoff distance from	om
the center of model (I)	
Figure 4.5: Fy due to 13kg of TNT which is located at 1.50m standoff distance from	m
the center of model (I)	38
Figure 4.6: U _Y at gauges 15 to 18 due to 13 kg of TNT which is located at 1.50m	
standoff distance from the center of model (I).	
Figure 4.7: Stress in Z direction at base of the barrier due to 13 kg of TNT which is	S
located at 1.50m standoff distance from the center of model (I).	
Figure 4.8: Stress in Z direction at center of the barrier due to 13 kg of TNT which	
located at 1.50m standoff distance from the center of model (I).	
Figure 4.9: Model (II) general view and gauges locations	40

Figure 4.10: Pressure at gauges 1 to 6 for first 100ms due to 13kg of TNT which is
located at 1.50m standoff distance from the center of model (II)
Figure 4.11: F _{Yc} due to an13kg of TNT which is located at 1.50m standoff distance
from the center of model (II)
Figure 4.12: F _Y due to 13kg of TNT which is located at 1.50m standoff distance from
the center of model (II)44
Figure 4.13: Damage index due to 13kg of TNT which is located at 1.50m standoff
distance from the center of model (II)
Figure 4.14: U_Y at gauges 15 to 18 due to 13kg of TNT which is located at 1.50m standoff distance from the center of model (II)
Figure 4.15: Stress in Z direction at base of the barrier due to 13kg of TNT which is
located at 1.50m standoff distance from the center of model (II)46
Figure 4.16: Maximum stress in Z direction distribution along a cross section at base
of the barrier due to 13kg of TNT which is located at 1.50m standoff distance from
the center of model (II)46
Figure 4.17: Stress in Z direction at center of the barrier due to 13kg of TNT which is
located at 1.50m standoff distance from the center of model (II)
Figure 4.18: Maximum stress in Z direction distribution along a cross section at center
of the barrier due 13kg of TNT which is located at 1.50m standoff distance from the
center of model (II)
Figure 4.19: Maximum top displacement in case of linear and nonlinear analysis due
to different explosive charges (1.63, 13, and 104.3kg) which are located at 1.50m
standoff distance from center of the barrier. 48
Figure 4.20: Maximum stress in Z direction at base of the barrier incase of linear and nonlinear analysis due to different explosive charges (1.63, 13, and 104.3kg) which
are located at 1.50m standoff distance from center of the barrier
Figure 4.21: Maximum stress in Z direction at center of the barrier incase of linear
and nonlinear analysis due to different explosive charges (1.63, 13, and 104.3kg)
which are located at 1.50m standoff distance from center of the barrier
Figure 4.22: Pressure at gauges 1 to 6 for first 100 ms due to 13kg of TNT which is
located at 1.50m standoff distance from the center of model (III)
Figure 4.23: F _{Yc} due to 13kg of TNT which is located at 1.50m standoff distance from
the center of model (III).
Figure 4.24: F _Y due to 13kg of TNT which is located at 1.50m standoff distance from
the center of model (III).
Figure 4.25: Damage index due to 13kg of TNT which is located at 1.50m standoff
distance from the center of model (III)
Figure 4.26: U _Y at gauges 15 to 18 due to 13kg of TNT which is located at 1.50m
standoff distance from the center of model (III).
Figure 4.27: Stress in Z direction at base of the barrier due to 13kg of TNT which is
located at 1.50m standoff distance from the center of model (III)53
Figure 4.28: Stress in Z direction at center of the barrier due to 13kg of TNT which is
located at 1.50m standoff distance from the center of model (III)54
Figure 4.29: Maximum top displacement at model (II) and (III) due to 13kg of TNT
which is located at 1.50m standoff distance from center of the barrier54
Figure 4.30: Maximum damage index at model (II) and (III) due to 13kg of TNT
which is located at 1.50m standoff distance from center of the barrier55

Figure 4.31: Maximum stress in Z direction at the base and the center of model (II)
and (III) due to 13kg of TNT which is located at 1.50m standoff distance from center
of the barrier
Figure 4.32: Model (IV) general view and gauges locations
Figure 4.33: Cross section of the sandwich barrier.
Figure 4.34: Pressure at gauges 19 to 24 for first 100 ms due to 13kg of TNT which is
located at 1.50m standoff distance from the center of model (IV)
Figure 4.35: Damage index due to 13kg of TNT which is located at 1.50m standoff
distance from the center of model (IV)
Figure 4.36: Model (V) general view and gauges locations
Figure 4.37: Cross section of the sandwich barrier has ribs every 100 cm64
Figure 4.38: Damage index due to 13kg of TNT which is located at 1.50m standoff
distance from the center of model (V)
Figure 4.39: U _Y at gauges 15 to 22 due to 13kg of TNT which is located at 1.50m
standoff distance from the center of model (V)
Figure 4.40: Stress in Z direction at base of the barrier due to 13kg of TNT which is
located at 1.50m standoff distance from the center of model (V)67
Figure 4.41: Stress in Z direction at center of the barrier due to 13kg of TNT which is
located at 1.50m standoff distance from the center of model (V)67
Figure 4.42: Model (VI) general view and gauges locations
Figure 4.43: Cross section of the sandwich barrier has ribs every 50cm
Figure 4.44: Damage index due to 13kg of TNT which is located at 1.50m standoff
distance from the center of model (VI)69
Figure 4.45: U _Y at gauges 15 to 22 due to 13kg of TNT which is located at 1.50m
standoff distance from the center of model (VI)69
Figure 4.46: Stress in Z direction at base of the barrier due to 13kg of TNT which is
located at 1.50m standoff distance from the center of model (VI)70
Figure 4.47: Stress in Z direction at center of the barrier due to 13kg of TNT which is
located at 1.50m standoff distance from the center of model (VI)70
Figure 4.48: Comparison of damage index for models (V&VI) due to 13kg of TNT
which is located at 1.50m standoff distance from center of the barrier71
Figure 5.1: Model (I) dimensions and the location of TNT charge
Figure 5.2: Model (I) general view and gauges locations
Figure 5.3: Pressure at gauges 1 for first 100 ms due to 13kg of TNT which is located
at 1.50m standoff distance from the center of model (I)
Figure 5.4: F _{Xc} due to 13kg of TNT which is located at 1.50m standoff distance from
the center of model (I)
Figure 5.5: F _X due to 13kg of TNT which is located at 1.50m standoff distance from
the center of model (I)
Figure 5.6:FZ due to 13kg of TNT which is located at 1.50m standoff distance from
the center of model (I)
Figure 5.7: U_X at gauges 8 to 10 due to 13kg of TNT which is located at 1.50m
standoff distance from the center of model (I)
Figure 5.8: Stress in Z direction at base of the barrier due to 13kg of TNT which is
located at 1.50m standoff distance from the center of model (I)
Figure 5.9: Stress in Z direction at center of the barrier due to 13kg of TNT which is
located at 1.50m standoff distance from the center of model (I)