Cairo University
Faculty of Veterinary Medicine
Department of Microbiology

Preparation of Inactivated Vaccine from Streptococcus equi subsp. equi and Evaluation of its Efficacy

A Thesis Presented by

Sara Mohamed Hemeda Abd-Elgelil

(B.V.Sc. 2011 - Cairo University)

For M.V.Sc in Microbiology (Bacteriology- Mycology - Immunology) Under the supervision of

Prof. Dr. Rafik Tawfik Mohamed Soliman

Professor (Emeritus) of Microbiology, Faculty of Veterinary Medicine, Cairo University

Prof. Dr. Mohamed Yousef Saleh Matook

Professor of Hygiene Faculty of Veterinary Medicine Cairo University

Dr. Ahmad Samir Mohamed

Assistant Professor of Microbiology Faculty of Veterinary Medicine Cairo University

Supervision Sheet

A Thesis Title:

Preparation of Inactivated Vaccine from *Streptococcus equi* subsp. *equi* and Evaluation of its Efficacy

A thesis Presented by

Sara Mohamed Hemeda Abd-Elgelil

B.V.Sc.(2011), Cairo University

Under supervision of

Prof. Dr. Rafik Tawfik Mohamed Soliman

Professor (Emeritus) of Microbiology, Faculty of Veterinary Medicine, Cairo University

Prof. Dr. Mohamed Yousef Saleh Matook

Professor of Hygiene Faculty of Veterinary Medicine Cairo University

Dr. Ahmad Samir Mohamed

Assistant Professor of Microbiology Faculty of Veterinary Medicine Cairo University

Cairo University Faculty of Veterinary Medicine Department of Microbiology

Name : Sara Mohamed Hemeda Abd Elgelil

Nationality : **Egyptian**Date of birth : 12/8/1989

Degree : M.V.Sc, in Veterinary Medical Science

Specification : Microbiology

Supervisors : **Prof. Dr. Rafik Tawfik Mohamed Soliman**

Professor of Microbiology

Faculty of Veterinary Medicine, Cairo University

Prof. Dr. Mohamed Yousef Saleh Matook

Professor of hygiene

Faculty of Veterinary Medicine, Cairo University

Dr. Ahmed Samir Mohamed

Assistant Professor of Microbiology,

Faculty of Veterinary Medicine, Cairo University

Thesis title **Preparation of inactivated vaccine from** *Streptococcus equi* **subsp.**

equi and Evaluation of its Efficacy

Abstract

In the present work Streptococcus species have been isolated from horses clinically suffering from strangles disease. The isolated streptococci were identified using bacteriological and molecular techniques. One isolate was identified as S. equi subsp. equi and the other 4 isolates were identified as Streptococcus equi subsp. zooepidemicus. The isolated streptococcal species were used to develop vaccine against strangles disease. Also two types of adjuvants were investigated and compared as immuno-potentiating agents, namely Montanide gel and ISA 70. Four vaccine formulations were prepared and its immunizing efficacy was investigated. The first two vaccine formulations were composed only from Streptococcus equi subsp. equi; the first one was adjuvanted with Montanide gel and the second with ISA70. The other two vaccine formulations were combined vaccines composed from both the Streptococcus equi subsp. equi and Streptococcus equi subsp. zooepidemicus. These 2 vaccine formulations were adjuvanted with Montanide gel (the third vaccine formulation) or with ISA70 (the fourth formulation). Using passive hemagglutination test and ELISA significant specific antibody titers have been measured in the immunized mice, rabbits and donkeys. The combined vaccine proved more effective than the monovalent one. Also ISA 70 adjuvant was better than the Montanide gel one. In challenge test in immunized mice with virulent S. equi subsp. equi, 55% protection rate was recorded.

Dedicated to:

My mother, father,

My husband Islam

And my brother and my sister

And my lovely Kid

Mariam Islam

Acknowledgment

First of all I thank Allah who gave me this opportunity to achieve this work.

I would like to express my sincere gratitude for the kindness and encouragement to **Professor Dr. RAFIK TAWFIK M. SOLIMAN,** Prof. of (Emeritus) Microbiology, Faculty of Veterinary Medicine, and Cairo University, who planned this work and supervised it.

My sincere thanks to **Professor Dr. Mohamed Yousef Saleh Matook,** Prof. of Hygiene, Faculty of Veterinary Medicine, Cairo University, for his assistance in fine work that ended with success in achievement of planned targets.

It is a pleasure to offer many thanks to **Dr. AHMED SAMIR M.SHEHATA** Assistant Prof. of Microbiology, Faculty of Veterinary Medicine, Cairo University, for his ideal guidance and constructive criticism as well as supplying facilities for my work.

I heartly Thank **Dr. Mahmoud El hariri**, Assistant prof. of Microbiology, Faculty of Veterinary Medicine, Cairo University, for his great help ,assistance in fine work and supplying facilities.

I am deeply grateful to **Dr.Ahmed Orabi**, Lecture of Microbiology, Faculty of Veterinary Medicine, Cairo University, for his assistance in fine work and great help and supplying facilities.

My sincere thanks to **Prof. Dr. Magdy El Sayed,** Prof. of infectious disease, Faculty of Veterinary Medicine, Cairo University, for his assistance in fine work that ended with success in achievement of planned targets.

List of Contents

	Subject	Page No.
1.	Introduction	1
2.	Review of Literature	5
2.1.	Strangles disease	5
2.1.1.	The clinical signs	6
2.1.2.	The pathogenesis	8
2.2.	The etiology of strangles	12
2.2.1.	Streptococcus equi subsp. equi	12
2.2.1.1.	Potential virulence factors of Streptococcus equi subsp. equi	13
2.2.1.1.1	The capsule	13
2.2.1.1.2	M protein	13
2.2.1.1.3	SeM protein	14
2.2.1.1.4	Secreted toxins and enzymes	15
2.2.2.	Streptococcus. equi subsp. zooepidemicus	16
2.2.2.1.	Virulence factor of Streptococcus equi subsp. zooepidemicus	17
2.2.2.2.	Super antigen of Streptococcus equi subsp. zooepidemicus	17
2.2.2.3.	Pathogenesis of Streptococcus equi subsp. zooepidemicus	17
2.2.3.	Streptococcus dysgalactiae subsp. equisimilis	18
2.3.	Epidemiology of strangles	19
2.4.	Complications associated with S. equi subsp.equi infection	20
2.4.1.	Immune-mediated complications: Purpura Hemorrhagica	20
2.4.2.	Complications associated with metastatic spread of infection	23
2.4.3.	Spread of the strangles infection	23
2.5.	Diagnosis of strangles	24
2.5.1.	Bacteriological examination	25
2.5.2.	Molecular diagnosis and genetic differentiation within the subspecies	25
2.5.3	Sequencing of the SeM protein gene	25
2.5.4	Serodiagnosis	26
2.5.4.1	Enzyme-linked immunosorbent assay (ELISA)	26
2.6.	Prevention of Strangles disease	30
2.6.1.	Quarantine/bacteriological screening	30
2.6.2	Treatment	31
2.7.	Vaccination against strangles disease	32
	1	

2.7.1.	Inactivated vaccines for strangle disease	32
2.7.1.1.	Whole killed S. equi subsp. equi bacterin	32
2.7.1.2.	S. equi subsp.equi M protein vaccine	34
2.7.1.3.	subunit vaccine for S. equi subsp. equi infection	37
2.7.1.4.	Fn-binding proteins vaccine	37
2.7.1.5.	collagen-binding protein (CNE) vaccine	38
2.7.1.6.	Multi-component recombinant Vaccine	39
2.7.1.7.	IgG glycosyl hydrolase from Streptococcus equi vaccine	40
2.7.2.	S. equi subsp. equi live vaccine	41
2.8.	Adjuvants used with S. equi subsp. equi vaccines	41
2.8.1.	The aluminum salts	44
2.8.2.	Freund's adjuvant (complete and incomplete)	45
2.8.3.	Sucrose acetate isobutyrate	45
2.8.4.	Monophosphoril lipid A	45
2.8.5.	Havlogen	45
2.8.6.	Cholera toxin B subunit (CTB) and E. coli heat-labile toxin	46
2.8.7.	Immuno-stimulating complexes (ISCOMs@andISCOMATRIX®)	46
2.8.8.	Polymeric micro and nanoparticles	47
2.8.8.1	Poly (lactic acid) and poly (lactic-co-glycolic acid	47
2.8.8.2	Poly-e-caprolactone	47
2	Motorial and mothods	40
3.	Material and methods Materials	49
3.1.		49
3.1.1.	Clinical samples Transportation of samples	49
3.1.2	Media used for selective isolation and identification of	49
3.1.3.	Streptococci:	49
3.1.3.1.	Edward's modified medium	49
3.1.3.2.	Sheep blood agar media :(MacFadden 1980):	50
3.1.3.3.	Brain heart infusion medium: (Cruickshank et al., 1975)	50
3.1.4.	Media used for biochemical identification of Streptococci	50
3.1.5.	Media used for preservation of S. equi isolates	50
3.1.6.	Broth media for cultivation and sub-culturing of S. equi	50
3.1.7.	Media for sterility Test	50
3.1.8.	Other materials used for identification of S. equi	50
3.1.9.	Materials for conventional Polymerase Chain Reaction (PCR)	51

3.1.9.1.	DNA extraction Kits	51
3.1.9.2.	Reagents for PCR	51
3.1.9.3.	Buffers and solutions for PCR	51
3.1.9.4.	Apparatus and Equipments for PCR	53
3.1.10.	Materials for vaccine Preparation	53
3.1.10.1.	Adjuvant:	53
3.1.10.2.	Inactivator: Formalin (Sigma, USA)	54
3.1.11.	Experimental animals used for safety and potency trials	54
3.1.12.	Equipment	54
3.1.13.	Materials for enzyme-detergent extraction of M protein	54
	from S. equi subsp.equi bacteria	
3.1.14.	Materials of Passive Haemagglutination Test (PHT)	55
3.1.15.	Chemicals and reagent used for Indirect ELISA	55
3.2.	Methods	57
3.2.1.	Bacteriological isolation	57
3.2.2.	Biotyping	57
3.2.3.	Preservation of Streptococcus equi subsp.equi cultures	57
3.2.4.	Conventional Polymerase Chain Reaction (PCR)	58
3.2.4.1	DNA extraction	58
3.2.4.2	Running of PCR	59
3.2.4.3	Screening of the PCR products by 1% agarose gel electrophoresis	60
3.2.4.4	Photographing of the gel	61
3.2.4.5	Molecular identification of seM gene isolates by sequencing	61
3.2.4.6	Similarity matrix analysis:	62
3.2.5	Vaccine Preparation	63
3.2.5.1	Preparation of the S. equi subsp.equi antigen mass	63
3.2.5.2	Quality control on the prepared vaccine	64
3.2.5.3	Batch control: General requirements for the inactivated bacterial products	65
3.2.6	Evaluation of the immunization efficacy of the prepared <i>S. equi</i> subsp. <i>equi</i> vaccines	66
3.2.6.1	Evaluation of the immunization efficacy of the prepared inactivated S. equi Vaccine formulation	66
3.2.6.2	Evaluation of the immunizing efficacy of 4 formulations of the prepared S. <i>equi</i> vaccine in rabbits	67
3.2.6.3	Evaluation of the immunizing efficacy of the prepared S .	68

	equi subsp. equi and S. equi subsp. zooepidemicus combined vaccines adjuvanted with ISA70 oil in donkeys	
3.2.7	Measurement of humoral immune response developed in animals immunized with the prepared inactivated <i>S. equi</i> vaccine formulations	68
3.2.7.1	Passive haemagglutination (PHA) test	68
3.2.7.2	Indirect Elisa using prepared SeM like protein	72
3.2.8	Challenge test in Balb/C mice immunized with inactivated Combined vaccine adjuvanted with ISA 70 oil	74
4.	Results	75
5.	Discussion	91
6.	Conclusion	99
7.	Summary	100
8.	References	103
	الملخص العربي	

List of Tables

No	Topic	Page
1	Biotyping of Streptococcus equi subspecies equi.	13
2	Different types of adjuvants used in preparation of S.	48
	equi vaccines.	
3	Primer sequences used for identification of S. equi.	52
4	Biotyping of Streptococcus spp.	58
5	GenBank Data of selected sequence refrence strains	62
	for S. equi seM gene	
6	Results of isolation of streptococci from nasal swabs	74
	and pus samples collected from 5 horses clinically	
	suspected of strangles disease.	
7	S. equi isolate source modifier data with	78
	accession number seM gene sequence	
8	S. equi subsp. equi antibody titer in serum samples of	81
	immunized mice as measured by Passive	
	Haemagglutination Test.	
9	S. equi subsp. equi antibody titer as measured by	82
	Passive Haemagglutination test in rabbits immunized	
	with the 4 vaccine formulations using M protein of S.	
	equi subsp. equi as sensitizing antigen	
10	Results of Indirect ELISA on serum samples from	84
	immunized donkeys using the prepared SeM like	
	protein of S. equi subsp. equi as coating antigen.	
	(results are expressed as OD being measured at	
	405nm	