ANALYSIS OF SOME CELL CYCLE REGULATORY MOLECULES IN CHRONIC HEPATITIS C VIRUS LIVER DISEASE

Thesis

Submitted for Partial Fulfilment of Master Degree (M.Sc.) in Science (Immunology)

By

Noha Abd El-Aal Ameen M. B. B. Ch., Faculty of Science, Cairo University

SUPERVISORS

Prof. Dr. Abd El-Hakim Saad El-Din
Professor of Immunology
Department of Zoology
Faculty of Science
Cairo University

Prof. Dr. Azza E.I. El Bassiouny
Professor of Immunology
Clinical and Chemical Pathology
Department of Immunology
Theodor Bilharz Research Institute

Faculty of Science Cairo University 2010

APPROVAL SHEET

Thesis Title

"Analysis of Some Cell Cycle Regulatory Molecules in Chronic Hepatitis C Virus Liver Disease"

Thesis Submitted to Zoology Department, Faculty of Science, Cairo University for Partial Fulfilment of Master Degree (M. Sc.) in Science (Immunology)

The Candidate Nam

Noha Abd El-Aal Ameen

The Suppervisor Committee

Prof. Dr. Abd El-Hakim Saad El-Din

Professor of Immunology, Department of Zoology, Faculty of Science, Cairo University

Prof. Dr. Azza E. I. El Bassiouny

Professor of Immunology, Clinical and Chemical Pathology, Department of Immunology, Theodor Bilharz Research Institute

Head of Zoology Departement

Prof. Dr. Abd El-Rahman Bashtar

ACKNOWLEDGEMENT

I wish to express my deep appreciation and profound gratitude to *Prof. Or. Abd El-Hakim Saad El-Din,* Professor of Immunology, Faculty of Science, Cairo University, for his excellent guidance, effective supervision and continuous encouragement.

I would like to express my deepest gratitude and sincere appreciation to *Prof. Or.***Azza E. I. El Bassiouny, Professor of Immunology, Immunology Department, Theodor Bilharz Research Institute, who kindly suggested and planned this work. Because of her instructive guidance, creative thinking, constructive criticism and sincere initiating power this work was brought to light. It is a great honor to work under her supervision.

I would, also, like to convey my gratitude to *Prof. Dr. Mona M. Nosseir*, Professor of Pathology, Pathology Department, Theodor Bilharz Research Institute, for her effective guidance and close supervision of different sets of immunohistochemical staining. Her interpretations and discussion of the results of histopathology and immunohistochemistry was very much appreciated.

I would, also, like to express my deepest gratitude to *Prof. Dr. Nora E. I. El-Bassiouni*, Professor of Hematology and Head of the Information Center, Theodor Bilharz Research Institute, for her excellent guidance, valuable assistance, beneficiary advice and indispensable help throughout the entire work of this thesis.

I would, also, like to express my sincere thanks to *Prof. Dr. Ibrahim Mostafa*, Professor of Hepato-Gastroenterology and Vice President of Theodor Bilharz Research Institute, for providing the clinical data and liver biopsy specimens.

My deepest thanks, also, extend to *Prof. Or. Mona K, Zoheiry*, Professor of Immunology, Immunology Department, Theodor Bilharz Research Institute, for her generous help, valuable advice and continuous support.

I would, also, like to express my sincere thanks to *Prof. Or. Ahmed M. Abdel-Hadi*, Professor of Pathology, Pathology Department, Theodor Bilharz Research Institute, for his excellant interpretations of the results of liver biopsies.

My thanks is, also, due to *Prof. Dr. Suher Zada*, Professor of Immunology, Biology Department, American university, Cairo, for her kind help and financial support of this work.

A special tribute is paid to *Mrs. Houda Abou-Taleb*, Assistant Lecturer, Environmental Research Department, Theodor Bilharz Research Institute, for statistical analysis of the results.

A special thanks to my colleague *Samah I. Abou El-Hassan*, Biology Specialist, Central Laboratory, Theodor Bilharz Research Institute, for her generous help and continuous support.

Noha A. Ameen

2010

TABLE OF CONTENTS

INTRODUCTION.	
AIM OF THE WORK	• • • •
REVIEW OF LITERATURE.	
1. HEPATITIS C VIRUS.	
1.1. The Virus.	
1.2. Transmission.	
1.3. Prevalence	
1.4. The Disease	
1.4.1. Acute hepatitis C.	
1.4.2. Chronic hepatitis C.	
1.4.3. Complications	
1.4.3.1. Liver cirrhosis (LC)	
1.4.3.2. Hepatocellular carcinoma (HCC)	
2. THE CELL CYCLE.	
2.1. Cell Cycle Check-Points.	
2.2. Cell Cycle Regulatory Proteins.	
2.2.1. Cyclins	
2.2.1.1. Cyclin D	
2.2.1.2. Cyclin E	
2.2.2. Cyclin-dependent kinases (Cdks).	
2.2.3. Cyclin-dependent kinase inhibitors (CdkIs)	
2.2.3.1. The INK4 family	
2.2.3.2. The Cip/Kip family	
2.2.3.2.1. p21 cyclin inhibiting protein-1 (p21 ^{Cip1/Waf1})	
2.2.3.2.2. p27 kinase inhibiting protein-1 (p27 ^{kip1})	
2.2.3.2.3. Mechanism of action	
2.2.4. Retinoblastoma protein (pRb)	
2.2.5. The E2F family	.
2.2.6. p53	
2.3. Impact of HCV Proteins on Cell Cycle	
2.3.1. HCV core protein.	
2.3.2. The NS2 protein.	
2.3.3. The NS3 and NS4 proteins.	
2.3.4. The NS5A protein.	
PATIENT AND METHODS	
RESULTS.	
DISCUSSION	
ST)MM ARY	

CONCLUSIONS	
REFERENCES	
ARABIC SUMMARY	

LIST OF ABBREVIATIONS

AA Amino acid.

Ag Antigen.

ALT Alanin aminotransferase.

AP Activating protein.

Apaf-1 Apoptosis protease activating factor-1.

ASK1 Apoptosis signal-regulating kinase 1.

AST Aspartate aminotransferase.

ATM Protein kinase that recognize damaged DNA leading to cell cycle arrest.

Bax Bcl-2–associated X protein.

C Core protein.

CAK Cdk-activating kinases.

Cdk Cyclin-dependent kinase.

CdkI Cyclin-dependent kinase inhibitor.

C/EBP CAATT enhancer binding protein.

CHC Chronic hepatitis C.

CHK2 Check-point kinase 2.

Cip Cyclin inhibitory protein.

c-myc Cellular avian myleocytoma virus gene.

CSA Circulating schistosomal antibody.

DNA Deoxyribonucleic acid.

E1, E2 Envelop proteins.

ECM Extracellular matrix.

E2F Transcription factor activating adenovirus E2 gene.

ELISA Enzyme-linked immunosorbent assay.

ER Endoplasmic reticulum.

ERK Extracellular signal related protein kinase.

FAK Focal adhesion kinase.

FCS Fetal calf serum.

G1, G2 Gap1, Gap2 phases.

GF Growth factor.

HBc Hepatitis B core antigen.

HBs Hepatitis B surface antigen.

HCC Hepatocellular carcinoma.

HCV Hepatitis C virus.

H & E Hematoxylin and eosin stain.

H₂O₂ Hydrogen peroxide.

H₂SO₄ Sulfuric acid.

Ig Immunoglobulin.

IHC Immunohistochemistry.

INK Inhibitory protein of Cdk4.

IRES Internal ribosome entry site.

JAB1 Jun activation domain binding protein-1.

JNK c-Jun NH₂-terminal kinase

kDa Kilo Dalton.

Kip Kinase inhibitory protein.

LC Liver cirrhosis.

M Mitosis.

MAb Monoclonal antibody.

MAPK Mitogen activated protein kinase.

MCM Multicopy maintenance.

Mdm2 Murine double minute 2.

MEK Mitogen activated ERK activated kinase.

mRNA Messenger ribonucleic acid.

NF Nuclear factor.

nm Nanometer.

NS Non-structural protein.

ORC Origin recognition complex.

PAT Parental anti-schistosome therapy.

PBS/T Phosphate buffer saline/Tween 20.

PCNA Proliferating cell nuclear antigen.

pRb Retinoblastoma protein.

PT Prothrombine time.

PUMA p53 up-regulated modulator of apoptosis.

raf Cytoplasmic serine/thereonine protein kinase.

ras Rat sarcoma.

RNA Ribonucleic acid.

RT-PCR Reverse transcriptase-polymerase chain reaction.

S Synthesis.

SAPK Stress-activated protein kinase.

SD Standard deviation.

SE Standard error.

SEA Soluble egg antigen.

SPSS Statistical Package for Social Sciences.

SR-BI Scavenger receptor class B1.

src Rous sarcoma virus.

STAT Signal transducer and activation transcription.

TBP TATA-box-binding protein.

TGF-β Transforming growth factor-*beta*.

UTR Untranslated region.

UV Ultraviolet.

LIST OF TABLES

		Page
Table 1	Clinical and laboratory data of all studied groups	53
Table 2	Immunohistochemical reactivity for cyclin D1 in all studied cases	56
Table 3	Immunohistochemical reactivity for cyclin E in patients with well- and poorly-differentiated hepatocellular carcinoma (HCC)	59
Table 4	Immunohistochemical reactivity for p21 ^{Cip1/Waf1} in all studied cases	62
Table 5	Immunohistochemical reactivity for p27 ^{kip1} in all studied cases	64
Table 6	Immunohistochemical reactivity for Rb1/p105 in all studied cases	67

LIST OF FIGURES

		Page
REVIEW (OF LITERATURE	
Figure 1	Structure of hepatitis C virus (HCV) genome and summary of HCV polyprotein processing.	9
Figure 2	The cell cycle events.	14
Figure 3	Coordinated control of G1 phase cell cycle progression by growth factors during cell cycle progression from G0 to S phase.	19
Figure 4	Cascade of events leading to cell cycle progression from G0 to S phase in response to growth factor stimulation.	20
Figure 5	Cyclin E/Cdk2 induced entry into S phase.	23
Figure 6	Negative regulation of cyclin/CDK complexes by CIP/KIP and INK4 families.	25
Figure 7	p21 ^{Cip1/Waf1} -mediated cell cycle arrest.	28
Figure 8	p53-induced up-regulation of p21 protein levels.	29
Figure 9	Cell cycle regulation by Rb and E2F.	33
Figure 10 RESULTS	p53 arrests the cell cycle through its interaction with p21 ^{Cip1/Waf1} .	38
Figure 11	Histopathologic findings in liver sections from control group, HCV-infected patients and HCV-related HCC.	54
Figure 12	Immunoperoxidase staining for cyclin D1 in liver sections from control group, HCV-infected patients and HCV-related HCC.	55
Figure 13	Immunoperoxidase staining for cyclin E in liver sections from control group, HCV-infected patients and HCV-related HCC.	58
Figure 14	Immunoperoxidase staining for p21 ^{Cip1/Waf1} in liver sections of HCV-infected patients and HCV-related HCC.	60
Figure 15	Immunoperoxidase staining for p27 ^{Kip1} in liver sections from control group, HCV-infected patients and HCV-related HCC.	63
Figure 16	Immunoperoxidase staining for Rb1/p105 in liver sections of control group, HCV-infected patients and HCV-related HCC.	66

Differential expression of cell cycle regulators in HCVinfection and related hepatocellular carcinoma

Azza E El Bassiouny¹, Mona M Nosseir², Mona K Zoheiry¹, Noha A Ameen³, Ahmed M Abdel-Hadi², Ibrahim M Ibrahim⁴, Suher Zada⁵, Abd El-Hakim Saad El-Din⁶, Nora E El-Bassiouni⁷

World J Hepatol 2010 January 27; 2(1): 32-41

Abstract

AIM: To investigate cell cycle proteins in chronic hepatitis C virus infection in order to analyze their role in the process of hepatocyte transformation and to characterize their prognostic properties.

METHODS: Subjects of the current study included 50 cases of chronic hepatitis C (CHC) without cirrhosis, 30 cases of CHC with liver cirrhosis (LC), and 30 cases of hepatitis C-related hepatocellular carcinoma (HCC) admitted to the Department of Hepato- Gastroenterology, Theodor Bilharz Research Institute (TBRI), Giza, Egypt. Fifteen wedge liver biopsies, taken during laparoscopic cholecystectomy, were also included as normal controls. Laboratory investigations including urine and stool analysis, liver function tests and prothrombin concentration; serologic markers for viral hepatitis and ultrasonography were done for all cases of the study together with immunohistochemical analysis using primary antibodies against cyclin D1, cyclin E, p21, p27 and Rb1/p105 proteins.

RESULTS: Normal wedge liver biopsies didn't express cyclin E or Rb1/p105 immunostaining but show positive staining for cyclin D1, p21 and p27. Cyclin D1 expressed nuclear staining that was sequentially increased from CHC to LC (p<0.01) to HCC (p<0.01) cases; meanwhile, cyclin E revealed nuclear positivity only in the case of HCC patients that was directly correlated to Rb1/p105 immuno-reactivity. The expression of p21 and p27 was significantly increased in CHC and LC cases compared to normal controls and HCC with no significant difference between well- and poorly-differentiated tumors. p21 showed only a nuclear pattern of staining, while, p27 presented with either cytoplasmic and/or nuclear reactivity in all studied cases. Correlation analysis revealed a direct relation between cyclin D1 and p21 in CHC cases (p<0.01), between cyclin D1 and cyclin E in HCC (p<0.01); however, an inverse relationship was detected between cyclin D1 and p21 or p27 (p<0.01) and between p21 and Rb1/p105 (p<0.05) in HCC.

CONCLUSION: These data suggest that upregulation of cyclin D1 in CHC plays a vital role in the development and differentiation of HCC; while, cyclin E may be a useful marker for monitoring tumor behavior. p21 and p27 can be used as predictive markers for HCC. Furthermore, expression of Rb1/p105 in CHC and LC may help to protect those patients from malignant transformation. Its higher presentation as well as inverse relation with p21 and histologic grades suggests its important role in hepatic carcinogenesis.

Key words: Chronic hepatitis C; Liver cirrhosis; Hepatocellular carcinoma; Cell cycle; Cyclin D1; Cyclin E; p21; p27; Rb1/p105

INTRODUCTION

The cell cycle is divided into four sequential phases. G1 is the first gap phase in which cells prepare for deoxyribonucleic acid (DNA) replication; S (synthesis) phase is the period of DNA synthesis for the reproduction of the whole genome; G2 is the second gap phase in which cells prepare mitosis; and M (mitosis) phase in which cell division occurs for the generation of two genetically identical daughter cells (Owa *et al.*, 2001). Quiescent cells that have not entered the cell cycle are referred to as being in G0 (Morgan, 2007_a).

Cyclins are the prime cell cycle regulators that play a central role in the control of cell proliferation by forming complexes with different cyclin-dependent kinases (Cdks) (Bornfeldt, 2003). Members of cyclin family are often quite distinct from each other in amino acid sequence (Morgan, 2007_a). At least, 15 different cyclins and 10 Cdks have been identified (Rosania and Chang, 2000). In response to mitogenic signals, G1 cyclins (cyclin D1 and cyclin E) participate in the initiation and progression of the cell cycle; where cyclin D1 is activated during the mid G1, while cyclin E is required for G1/S transition (Jung *et al.*, 2001). They can accelerate and shorten the G1 phase and reinforce the ability of cells to loose growth control suggesting an oncogenic role for G1 cyclins (Mann *et al.*, 2007).

Cyclin-dependent kinase inhibitors (CdkIs), on the other hand, are potent negative regulators of the cell cycle that inhibit the G1/S transition (Mann *et al.*, 2007) and include two families on the basis of sequence homology: The INK4 family including p16^{INK4a}, p15^{INK4b}, p18^{INK4c} and p19^{INK4d} that specifically binds to Cdk4 and Cdk6 and inhibits cyclin D binding (Nan *et al.*, 2004) and the Cip/Kip family including p21^{Cip1/Waf1}, p27^{Kip1}

and p57^{Kip2} that bind to and inhibit cyclin bound Cdks (Polak *et al.*, 2003). Moreover, the two main regulatory proteins of the cell cycle are the retinoblastoma proteins (pRb) and p53. The Rb gene family is composed of three members that share many structural and functional features and play a fundamental role in growth control (Santopietro *et al.*, 2006). It includes the Rb susceptibility gene which encodes a nuclear phosphoprotein (pRb1/p105) and two related genes pRb/p107 and pRb2/p130 (Baldi *et al.*, 1996). The Rb1/p105 gene maps to the 13q14 chromosome, where deletions and heterozygous mutations are frequent in many human malignancies (Nevins, 1998; Sanseverino *et al.*, 2003). The balance between cell cycle regulators and cell proliferation is an important determinant of tumor development and/or behavior (Lü *et al.*, 2005).

Hepatitis C virus (HCV) is one of the most common etiologic agents of chronic liver disease (Li *et al.*, 2004). Infection with HCV becomes persistent in most infected individuals and can lead to the development of chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC) (Bian *et al.*, 2009).

Chronic hepatitis C is one of the most serious liver diseases in Egypt (El-Zayadi *et al.*, 2005). Hepatitis C patients tend to retain the causative virus for long periods and attain a carrier state with high risk for developing complications (Okumura *et al.*, 2005).

It has been suggested that hepatocyte turnover is increased in chronic HCV infection as markers of cell proliferation are elevated (Lake-Bakaar *et al.*, 2002) and telomere shortening is reported (Miura *et al.*, 1997). However, mitotic activity is usually sparse or absent as hepatocytes expressing "proliferation markers" could enter the cell cycle but have been arrested and unable to complete cell division or progress to S phase (Marshall *et al.*, 2005).

Viral replication is enhanced by induction of both cell cycle entry and cell cycle arrest by viral factors (Flemington, 2001). Accordingly, a relationship between viral replication and the host cell cycle state exists in HCV infection (Marshall *et al.*, 2005). There are several potential consequences of cell cycle arrest and senescence for the liver. Cellular senescence is a risk factor for cancer development and senescent hepatocytes may act synergistically with oncogenic mutations in neighboring hepatocytes leading to the development of HCC (Krtolica *et al.*, 2001; Ozturk *et al.*, 2009).