Use of Biceps Tendon as A graft in Treatment of Massive Irreparable Rotator Cuff Tear

Ehesis

Submitted for Partial Fulfillment of Doctoral Degree in Orthopedic Surgery

By

Nabil Mahmoud Hassan Elembaby

(MB, B.ch. Cairo University) (M.Sc. Orth. Cairo University)

Under Supervision of

Prof. Dr. Ahmed Amin Galal

Professor of Orthopedic Surgery
Faculty of Medicine
Cairo University

Prof. Dr. Sherif Mamdouh Abd Elhafez Amr

Professor of Orthopedic Surgery Faculty of Medicine Cairo University

Dr. Walid Reda Mohamed

Lecturer of Orthopedic Surgery Faculty of Medicine Cairo University

> Faculty of medicine Cairo University 2014

Acknowledgements

First, and format, my deepest gratitude and thanks should be offered to "ALLAH", the most kind and most merciful, for giving me the strength to complete this work.

I would like to express my sincere gratitude to **Prof. Dr.**Ahmed Amin Galal, Professor of Orthopedic Surgery, Faculty of Medicine, Cairo University, for his continuous support and guidance for me to present this work. It really has been an honor to work under his generous supervision.

I acknowledge with much gratitude to **Prof. Dr. Sherif Mamdouh Abd Elhafez Amr,** Professor of Orthopedic Surgery, Faculty of Medicine, Cairo University, for his great supervision and unlimited help to provide all facilities to accomplish this work.

I acknowledge with much gratitude to **Dr. Walid Reda Mohamed**, Lecturer of Orthopedic Surgery, Faculty of
Medicine, Cairo University, for his great efforts, valuable advice
and time in this work.

Last but not least, thanks to my Parents and my Wife, for helping me to finish this work.

Mabil Mahmoud Hassan Elembaby

Contents

Introduction	1
Aim of the work	3
Review of literature	4
Anatomy	
Causes of injury and pathoanatomy	17
Definition and classification	29
Diagnosis	34
Treatment	
Materials and Methods	58
Results	79
Discussion	101
Summary	113
References	116
Arabic Summary	

List of Tables

Tab. No.	Title	Page
Table (1):	Influence of the tendons rupture on the Acromiohumera	ıl
	distance (AHD)	31
Table (2):	Types of Extracellular Matrices (ECMs)*	54
Table (3):	Showing age incidence of patients.	79
Table (4):	Male to female ratio.	80
Table (5):	Pattern of dominance.	81
Table (6):	Degree of physical activity.	82
Table (7):	Time interval between complaint onset and operation	83
Table (8):	associated generalized disorders.	84
Table (9):	Pre-operative UCLA pain score.	85
Table (10):	Pre-operative UCLA function score	86
Table (11):	Range of pre-operative active forward flexion	86
Table (12):	Muscle strength of pre-operative forward flexion	87
Table (13):	Pre-operative total UCLA score.	87
Table (14):	Showing range of external rotation pre-operatively	88
Table (15):	Showing range of internal rotation pre-operatively	89
Table (16):	Showing X-rays findings in our patients	89
Table (17):	MRI findings in our patients.	90
Table (18):	Post-operative UCLA pain score	91
Table (19):	post-operative UCLA function score.	92
Table (20):	Range of post-operative active forward flexion	93
Table (21):	Muscle strength of post-operative forward flexion	93
Table (22):	Showing range of external rotation post-operatively	94
Table (23):	Showing range of internal rotation post-operatively	94
Table (24):	Showing degree of patient's satisfaction.	95
Table (25):	Post operatively Total UCLA score.	95
Table (26):	Final results.	96
Table (27):	Comparison between preop pain. and postop. Pair	n
	UCLA score.	97
Table (28):	comparison between preop function. and postop function UCLA score.	
Table (29):	comparison between preop active forward flexion. and postop active forward flexion UCLA score	

List of Tables (Cont...)

Tab. No.	Title	Page
Table (30)	: . comparison between preop muscle strength for flexion. and postop muscle strength forward UCLA score.	flexion
Table (31):	comparison between preop external rotation. And external rotation UCLA score.	postop
Table (32):	comparison between preop internal rotation. And internal rotation UCLA score	

List of Figures

Fig. No.	Title	Page
Figure (1): A	anatomy of the Rotator Muscles	1
_	Anatomical course of the subscapularis muscle)	
_	The subscapularis bursa. Note its sub coracoid location	
rigule (3).	•	
Figure (4), T	between the glenoid neck and subscapularis muscle	
	The subacromial and subdeltoid bursas	
	Anatomic course of the suprascapular nerve	
•	Different types of acromion	
	Anatomical variant of the coraco-acromial ligament	
-	The coracoacromial arch	
•	Anterior Acromial Spur	
	Prominance of the AC joint	
	Supraspinatus outlet	
Figure (12):	Tendon fiber failure starts at deep surface of the	
	supraspinatus near its insertion & near biceps tendon	
Figure (13):	Full-thickness tear of the supraspinatus tendon	22
Figure (14):	Defect extends to the infraspinatus tendon (Lt). Defec	t
	propagation across the bicipital groove to subscapularis	,
	destabilizes the biceps tendon (Rt))	22
Figure (15):	(A) Normal relationship of cuff and Coracoacromial arch (B))
_	Upward displacement of head squeezing cuff agains	t
	acromion and Coracoacromial ligament (C) Greater	
	tuberosity contact and abrasion, giving, rise to a traction sput	
	in Coracoacromial ligament.(D) greater upward	
	displacement, resulting in cuff tear arthropathy)	
Figure (16):	(a) The supraspinatus helps to stabilize the head of the	
118010 (10).	humerus against the upward pull of the deltoid. Here	
	subacromial impingement is prevented by normal cuff	
	function (b) Deep surface tearing of the supraspinatus	
	weakens the ability of the cuff to hold the head of the	
	humerus down. Impingement of the tendon against the	
	acromion is the result	
Figure (17):		
rigule (17).	(a) in addition to the supraspinatus, the anterior and posterior	
	rotator cuff muscles and the long head of the biceps tendor	
	depress the humeral head and balance the upward-directed	
	forces applied by the deltoid muscle (b) Major cuff fiber	
	failure and retraction allows the humeral head to protrude	
	upward through the cuff defect, creating a type of	
	"boutonniere" lesion. When the remaining cuff tendons slip	•
	below the equator of the head, their action is converted from	
	humeral head depression to humeral head elevation	25

List of Figures (Cont...)

Fig. No.	Title	Page
Figure (18):	The mechanical factors. Upward migration and instability are	;
	the primary factors leading to cuff tear arthropathy	26
Figure (19):	The nutritional factors: Massive rotator cuff tear and reduced	l
	motion contribute to disruption of perfusion of nutrients to)
	the articular cartilage leading to cuff tear arthropathy	26
Figure (20):	Transverse and Coronal force couples. The loss of stable	
	fulcrum of motion leads to cuff tear arthropathy	
Figure (21):	Radiographs demonstrating the classification of massive	
	rotator cuff tears according to the system of Hamada et al., S	
	= stage	
Figure (22):	Evaluation of fatty infiltration on MRI Sagittal oblique T1-	
	weighted image shows grade(0) or (1) Up(Lt.).Grade (2)-	
	up(Rt), Grade (3) -down(Lt), and Grade(4)-down(Rt) fatty	
F' (22)	infiltration	
Figure (23):	True anteroposterior radiographs of the right shoulder of a	
	seventy-four-year-old man with supraspinatus and	
Figure (24):	infraspinatus tears T2 weighted parasacittal MBL of the left shoulder with a	
Figure (24).	T2-weighted parasagittal MRI of the left shoulder with a massive rotator cuff tear, including the supraspinatus	
	infraspinatus, and subscapularis tendons. At the time of	
	diagnosis, there fatty infiltration of the supraspinatus (white	
	arrowheads), infraspinatus (black arrowheads) and	
	subscapularis(up)	
Figure (25):	Lateral radiograph showing anterior subluxation of the	
	humeral head after failed transfer of pectoralis major and	
	total shoulder replacement	
Figure (26):	Lateral radiograph showing anterior subluxation of the	è
	humeral head after transfer of pectoralis major for a massive	;
	tear of the rotator cuff	44
Figure (27):	Intraoperative photographs of the latissimus dorsi and the	
	attachment of allograft fascia lata. Placement of allograft	
	fascia lata adjacent to the latissimus dorsi tendon (Lt)	
	Allograft fascia lata doubled on itself and sewn to the	
	latissimus dorsi tendon to provide added length for the	
E: (20).	transfer (Rt)	
Figure (28):	Preoperative radiograph demonstrating Hamada stage-4E	
	cuff tear arthropathy (Lt). Postoperative radiograph showing the reverse shoulder prosthesis (Rt)	
Figure (20)	The patient was managed with reverse total shoulder	
1 iguic (27).	arthroplasty and an associated iliac crest bone graft. Because	
	of a technical error, the central peg of the base plate was not	
	implanted in the native glenoid (Lt). Three months after	
	implantation, the glenoid pulled out (Rt).	49

List of Figures (Cont...)

Fig. No.	Title	Page
Figure (30):	With the patient in the beach-chair position, the arm draped free, and the arm elevated and internally rotated, a curved incision is made lateral to the axillary crease	d
Figure (31):	No remaining rotator cuff is attached to the humerus. The humerus is in internal rotation, and the deltoid muscle is retracted with a deltoid retractor. The transferred latissimul dorsi is passed between the teres minor and the deltoid and thus in front of the deltoid retractor.	s s d
Figure (32):	Intraoperative photographs of a study patient receiving Restore® patch. The cuff was completely repairable. The Restore® patch was first sewn to the medial aspect of the tendon (up-Rt.). The patch was then stretched over the repair to the greater tuberosity(up-Lt.) and then sewn to the greater tuberosity (down)	e e r er
Figure (33):	Treatment algorithm for patients who are not willing to accept their symptoms. Ant. = anterior, elev. =elevation; ext =external; rot. = rotation; lat. =latissimus; RTSA=revers total shoulder replacement	t. e
Figure (34):	Age incidence statistics	58
• • •	Sex distribution.	
	Pattern of dominance.	
_	Causes of tear	
	Associated chronic diseases	
	Involved tendons.	
_	Interval time until surgery.	
• , ,	Beach-chair position	
	Portals for shoulder arthroscopy	
Figure (43):	The tenotomized biceps tendon was bridged into the gap in	
	immobile rotator cuff tears. RC, rotator cuff; B, expanded	
	biceps tendon with degenerative widening; GT, greate tuberosity.	71
• , ,	Skin incision used	
	Age incidence statistics	
	male to female ratio.	
• • •	Pattern of Dominance	
	Causes of tear	
	Physical activity	
	Pre-operative UCLA pain score.	
Figure (51):	Pre-operative UCLA Function score.	86

List of Figures (Cont...)

Fig. No.	Title	Page
F' (50)	D. C. T. LLICIA	00
Figure (52):	Pre-operative Total UCLA score.	88
Figure (53):	Pre-operative MRI findings.	90
Figure (54):	Post-operative UCLA pain score.	91
Figure (55):	Post-operative UCLA function score.	92
Figure (56):	Postoperatively total UCLA score.	96
Figure (57):	Final results	97

List of Abbreviations

AC : Acromio-clavicular joint

BT : Biceps tendon.

E.R : External rotation

EX : Extention

Fig : Figure.

GH : Glenohumeral joint

I.R : Internal rotation

IS : Infraspinatus

MRA : Magnetic Resonance Arthrography.

MRI : Magnetic Resonance Imaging.

NSAID : Non-steroidal anti-inflammatory drugs.

RC : Rotator cuff

RCT : Rotator cuff tear

ROM : Range of motion.

SC : Subscapularis

SS : Supraspinatus

ST : Scapulothoracic

TM : Teres minor

UCLA : University of California Los Angeles

US : Ultrasound

Introduction

The glenohumeral (shoulder) joint is a ball-and-socket type of synovial joint that permits a wide range of movement; however, its mobility makes the joint relatively unstable (**Aguar and Dalley**, **2005**).

Four of the scapulohumeral muscles (intrinsic shoulder muscles) are supraspinatus, infraspinatus, teres minor, subscapularis are called rotator cuff muscles because they form a musculotendinous rotator cuff around the glenohumeral joint. All except the supraspinatus are rotators of the humerus; the supraspinatus, besides being part of the rotator cuff, initiates and assists the deltoid in the first 15° of abduction of the arm. The tendons of the SITS muscles blend with and reinforce the fibrous layer of the joint capsule of the glenohumeral joint, thus forming the rotator cuff that protects the joint and gives it stability. The tonic contraction of the contributing muscles holds the relatively large head of the humerus in the small, shallow glenoid cavity of the scapula during arm movements (Aguar and Dalley, 2005).

DeOrio and Cofield, 1984, defined massive rotator cuff tears as those in which the length of the greatest diameter of the tear measured more than 5 cm; other authors have defined massive cuff tears as those that involve at least 2 tendons (**Shane et al., 2010**).

Massive tears are always associated with weakness and, especially in young patients, often with painful disability. Massive

tears are rarely due to an acute injury; rather, they are usually chronic and are associated with myotendinous retraction, loss of musculotendinous elasticity, fatty infiltration of muscles, static (superior) subluxation of the humeral head, and ultimately, osteoarthritis (Christian et al., 2011).

Static superior subluxation of a glenohumeral joint with an acromiohumeral interval of 7 mm or less on an anteroposterior radiograph with the arm in neutral rotation is associated with an exorbitantly high repair failure rate and considered indicative of irreparability of a tear. Static anterior subluxation, as detected on computed tomography (CT) or magnetic resonance imaging (MRI), though less well studied, appears to be indicative of irreparability of an anterosuperior tear. Stage 3 or 4 fatty infiltration of the rotator cuff muscles as determined by CT or MRI has repeatedly been associated with irreparability of rotator cuff tears (Goutallier et al., 2003).

Treatment depends on the presenting symptoms (pain and/or disability), age, and functional level. Other issues such as medical comorbidities, the presence of an intact coracoacromial arch, and possible concomitant glenohumeral arthritis are also factors that must be considered in the treatment plan. The treatment options range from conservative (nonoperative) to surgical intervention. Surgical options include débridement with or without partial rotator cuff repair, tendon transfer, muscle tendon slide procedures, the use of rotator cuff allografts and synthetic grafts, arthrodesis, and shoulder arthroplasty, including the use of reverse ball prostheses (**David et al., 2006**).

Aim of the Work

This work aims to evaluate the clinical outcomes in patients with irreparable massive rotator cuff tears whom treated with The LHB tendon patch grafting that seems to be one of the useful options for surgical treatment of irreparable massive rotator cuff tears.

ANATOMY

The four muscles that compose the rotator cuff take their origin from the body of the scapula and envelope the humeral head (Fig.1), as they insert along the tuberosities of the proximal humerus. The musculotendinous cuff is firmly adherent to the underlying glenohumeral capsule and provides circumferential reinforcement (*Warner*, 1993).

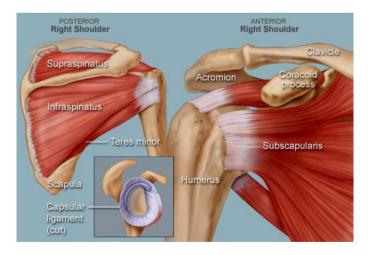


Figure (1): Anatomy of the Rotator Muscles (Web MD, 2011).